60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      On-surface synthesis of graphene nanoribbons with zigzag edge topology

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Graphene-based nanostructures exhibit a vast range of exciting electronic properties that are absent in extended graphene. For example, quantum confinement in carbon nanotubes and armchair graphene nanoribbons (AGNRs) leads to the opening of substantial electronic band gaps that are directly linked to their structural boundary conditions. Even more intriguing are nanostructures with zigzag edges, which are expected to host spin-polarized electronic edge states and can thus serve as key elements for graphene-based spintronics. The most prominent example is zigzag graphene nanoribbons (ZGNRs) for which the edge states are predicted to couple ferromagnetically along the edge and antiferromagnetically between them. So far, a direct observation of the spin-polarized edge states for specifically designed and controlled zigzag edge topologies has not been achieved. This is mainly due to the limited precision of current top-down approaches, which results in poorly defined edge structures. Bottom-up fabrication approaches, on the other hand, were so far only successfully applied to the growth of AGNRs and related structures. Here, we describe the successful bottom-up synthesis of ZGNRs, which are fabricated by the surface-assisted colligation and cyclodehydrogenation of specifically designed precursor monomers including carbon groups that yield atomically precise zigzag edges. Using scanning tunnelling spectroscopy we prove the existence of edge-localized states with large energy splittings. We expect that the availability of ZGNRs will finally allow the characterization of their predicted spin-related properties such as spin confinement and filtering, and ultimately add the spin degree of freedom to graphene-based circuitry.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          Generalized Gradient Approximation Made Simple

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials

            Quantum ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). Quantum ESPRESSO stands for "opEn Source Package for Research in Electronic Structure, Simulation, and Optimization". It is freely available to researchers around the world under the terms of the GNU General Public License. Quantum ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively-parallel architectures, and a great effort being devoted to user friendliness. Quantum ESPRESSO is evolving towards a distribution of independent and inter-operable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Edge state in graphene ribbons: Nanometer size effect and edge shape dependence

                Bookmark

                Author and article information

                Journal
                2015-11-16
                Article
                10.1038/nature17151
                1511.05037
                79e75db3-464a-4bbb-82b8-f93da2659e50

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                15 pages, 4 figures
                cond-mat.mtrl-sci

                Condensed matter
                Condensed matter

                Comments

                Comment on this article