102
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cell-laden microengineered gelatin methacrylate hydrogels.

      Biomaterials
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cellular microenvironment plays an integral role in improving the function of microengineered tissues. Control of the microarchitecture in engineered tissues can be achieved through photopatterning of cell-laden hydrogels. However, despite high pattern fidelity of photopolymerizable hydrogels, many such materials are not cell-responsive and have limited biodegradability. Here, we demonstrate gelatin methacrylate (GelMA) as an inexpensive, cell-responsive hydrogel platform for creating cell-laden microtissues and microfluidic devices. Cells readily bound to, proliferated, elongated, and migrated both when seeded on micropatterned GelMA substrates as well as when encapsulated in microfabricated GelMA hydrogels. The hydration and mechanical properties of GelMA were demonstrated to be tunable for various applications through modification of the methacrylation degree and gel concentration. The pattern fidelity and resolution of GelMA were high and it could be patterned to create perfusable microfluidic channels. Furthermore, GelMA micropatterns could be used to create cellular micropatterns for in vitro cell studies or 3D microtissue fabrication. These data suggest that GelMA hydrogels could be useful for creating complex, cell-responsive microtissues, such as endothelialized microvasculature, or for other applications that require cell-responsive microengineered hydrogels.

          Related collections

          Author and article information

          Journal
          20417964
          2878615
          10.1016/j.biomaterials.2010.03.064

          Comments

          Comment on this article

          Related Documents Log