0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Fitting pole-zero micromechanical models to cochlear response measurements

      , ,
      The Journal of the Acoustical Society of America
      Acoustical Society of America (ASA)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          A cochlear frequency-position function for several species--29 years later.

          Accurate cochlear frequency-position functions based on physiological data would facilitate the interpretation of physiological and psychoacoustic data within and across species. Such functions might aid in developing cochlear models, and cochlear coordinates could provide potentially useful spectral transforms of speech and other acoustic signals. In 1961, an almost-exponential function was developed (Greenwood, 1961b, 1974) by integrating an exponential function fitted to a subset of frequency resolution-integration estimates (critical bandwidths). The resulting frequency-position function was found to fit cochlear observations on human cadaver ears quite well and, with changes of constants, those on elephant, cow, guinea pig, rat, mouse, and chicken (Békésy, 1960), as well as in vivo (behavioral-anatomical) data on cats (Schucknecht, 1953). Since 1961, new mechanical and other physiological data have appeared on the human, cat, guinea pig, chinchilla, monkey, and gerbil. It is shown here that the newer extended data on human cadaver ears and from living animal preparations are quite well fit by the same basic function. The function essentially requires only empirical adjustment of a single parameter to set an upper frequency limit, while a "slope" parameter can be left constant if cochlear partition length is normalized to 1 or scaled if distance is specified in physical units. Constancy of slope and form in dead and living ears and across species increases the probability that the function fitting human cadaver data may apply as well to the living human ear. This prospect increases the function's value in plotting auditory data and in modeling concerned with speech and other bioacoustic signals, since it fits the available physiological data well and, consequently (if those data are correct), remains independent of, and an appropriate means to examine, psychoacoustic data and assumptions.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique.

            B Rhode (1971)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea.

              Sound is encoded within the auditory portion of the inner ear, the cochlea, after propagating down its length as a traveling wave. For over half a century, vibratory measurements to study cochlear traveling waves have been made using invasive approaches such as laser Doppler vibrometry. Although these studies have provided critical information regarding the nonlinear processes within the living cochlea that increase the amplitude of vibration and sharpen frequency tuning, the data have typically been limited to point measurements of basilar membrane vibration. In addition, opening the cochlea may alter its function and affect the findings. Here we describe volumetric optical coherence tomography vibrometry, a technique that overcomes these limitations by providing depth-resolved displacement measurements at 200 kHz inside a 3D volume of tissue with picometer sensitivity. We studied the mouse cochlea by imaging noninvasively through the surrounding bone to measure sound-induced vibrations of the sensory structures in vivo, and report, to our knowledge, the first measures of tectorial membrane vibration within the unopened cochlea. We found that the tectorial membrane sustains traveling wave propagation. Compared with basilar membrane traveling waves, tectorial membrane traveling waves have larger dynamic ranges, sharper frequency tuning, and apically shifted positions of peak vibration. These findings explain discrepancies between previously published basilar membrane vibration and auditory nerve single unit data. Because the tectorial membrane directly overlies the inner hair cell stereociliary bundles, these data provide the most accurate characterization of the stimulus shaping the afferent auditory response available to date.
                Bookmark

                Author and article information

                Journal
                The Journal of the Acoustical Society of America
                The Journal of the Acoustical Society of America
                Acoustical Society of America (ASA)
                0001-4966
                August 2017
                August 2017
                : 142
                : 2
                : 666-679
                Article
                10.1121/1.4996128
                79ee91ee-542b-41d3-879a-7c9d5b7c12b1
                © 2017
                History

                Comments

                Comment on this article