7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comprehensive review of neuromyelitis optica and clinical characteristics of neuromyelitis optica patients in Puerto Rico

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuromyelitis optica (NMO) is an immune-mediated inflammatory disorder of the central nervous system. It is characterized by concurrent inflammation and demyelination of the optic nerve (optic neuritis [ON]) and the spinal cord (myelitis). Multiple studies show variations in prevalence, clinical, and demographic features of NMO among different populations. In addition, ethnicity and race are known as important factors on disease phenotype and clinical outcomes. There are little data on information about NMO patients in underserved groups, including Puerto Rico (PR). In this research, we will provide a comprehensive overview of all aspects of NMO, including epidemiology, environmental risk factors, genetic factors, molecular mechanism, symptoms, comorbidities and clinical differentiation, diagnosis, treatment, its management, and prognosis. We will also evaluate the demographic features and clinical phenotype of NMO patients in PR. This will provide a better understanding of NMO and establish a basis of knowledge that can be used to improve care. Furthermore, this type of population-based study can distinguish the clinical features variation among NMO patients and will provide insight into the potential mechanisms that cause these variations.

          Related collections

          Most cited references261

          • Record: found
          • Abstract: found
          • Article: not found

          Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis.

          Although the effects of commensal bacteria on intestinal immune development seem to be profound, it remains speculative whether the gut microbiota influences extraintestinal biological functions. Multiple sclerosis (MS) is a devastating autoimmune disease leading to progressive deterioration of neurological function. Although the cause of MS is unknown, microorganisms seem to be important for the onset and/or progression of disease. However, it is unclear how microbial colonization, either symbiotic or infectious, affects autoimmunity. Herein, we investigate a role for the microbiota during the induction of experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Mice maintained under germ-free conditions develop significantly attenuated EAE compared with conventionally colonized mice. Germ-free animals, induced for EAE, produce lower levels of the proinflammatory cytokines IFN-γ and IL-17A in both the intestine and spinal cord but display a reciprocal increase in CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs). Mechanistically, we show that gut dendritic cells from germ-free animals are reduced in the ability to stimulate proinflammatory T cell responses. Intestinal colonization with segmented filamentous bacteria (SFB) is known to promote IL-17 production in the gut; here, we show that SFBs also induced IL-17A-producing CD4(+) T cells (Th17) in the CNS. Remarkably, germ-free animals harboring SFBs alone developed EAE, showing that gut bacteria can affect neurologic inflammation. These findings reveal that the intestinal microbiota profoundly impacts the balance between pro- and antiinflammatory immune responses during EAE and suggest that modulation of gut bacteria may provide therapeutic targets for extraintestinal inflammatory diseases such as MS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: A multicentre study of 175 patients

            Background The diagnostic and pathophysiological relevance of antibodies to aquaporin-4 (AQP4-Ab) in patients with neuromyelitis optica spectrum disorders (NMOSD) has been intensively studied. However, little is known so far about the clinical impact of AQP4-Ab seropositivity. Objective To analyse systematically the clinical and paraclinical features associated with NMO spectrum disorders in Caucasians in a stratified fashion according to the patients' AQP4-Ab serostatus. Methods Retrospective study of 175 Caucasian patients (AQP4-Ab positive in 78.3%). Results Seropositive patients were found to be predominantly female (p 1 myelitis attacks in the first year were identified as possible predictors of a worse outcome. Conclusion This study provides an overview of the clinical and paraclinical features of NMOSD in Caucasians and demonstrates a number of distinct disease characteristics in seropositive and seronegative patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High cholesterol level is essential for myelin membrane growth.

              Cholesterol in the mammalian brain is a risk factor for certain neurodegenerative diseases, raising the question of its normal function. In the mature brain, the highest cholesterol content is found in myelin. We therefore created mice that lack the ability to synthesize cholesterol in myelin-forming oligodendrocytes. Mutant oligodendrocytes survived, but CNS myelination was severely perturbed, and mutant mice showed ataxia and tremor. CNS myelination continued at a reduced rate for many months, and during this period, the cholesterol-deficient oligodendrocytes actively enriched cholesterol and assembled myelin with >70% of the cholesterol content of wild-type myelin. This shows that cholesterol is an indispensable component of myelin membranes and that cholesterol availability in oligodendrocytes is a rate-limiting factor for brain maturation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Surg Neurol Int
                Surg Neurol Int
                SNI
                Surgical Neurology International
                Medknow Publications & Media Pvt Ltd (India )
                2229-5097
                2152-7806
                2018
                03 December 2018
                : 9
                : 242
                Affiliations
                [1]San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
                [1 ]Caribbean Neurological Center, Guaynabo, Puerto Rico, USA
                Author notes
                [* ]Corresponding author
                Article
                SNI-9-242
                10.4103/sni.sni_224_18
                6293609
                79f09240-8126-4095-a232-a25e73e5c74c
                Copyright: © 2018 Surgical Neurology International

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                : 12 July 2018
                : 21 August 2018
                Categories
                Inflammation: Review Article

                Surgery
                aqp4 antibodies,multiple sclerosis,myelitis,neuromyelitis optica,optic neuritis
                Surgery
                aqp4 antibodies, multiple sclerosis, myelitis, neuromyelitis optica, optic neuritis

                Comments

                Comment on this article