12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina.

      1 , ,
      Journal of biomedical optics
      SPIE-Intl Soc Optical Eng

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper presents comprehensive and depth-resolved retinal microvasculature images within human retina achieved by a newly developed ultrahigh sensitive optical microangiography (UHS-OMAG) system. Due to its high flow sensitivity, UHS-OMAG is much more sensitive to tissue motion due to the involuntary movement of the human eye and head compared to the traditional OMAG system. To mitigate these motion artifacts on final imaging results, we propose a new phase compensation algorithm in which the traditional phase-compensation algorithm is repeatedly used to efficiently minimize the motion artifacts. Comparatively, this new algorithm demonstrates at least 8 to 25 times higher motion tolerability, critical for the UHS-OMAG system to achieve retinal microvasculature images with high quality. Furthermore, the new UHS-OMAG system employs a high speed line scan CMOS camera (240 kHz A-line scan rate) to capture 500 A-lines for one B-frame at a 400 Hz frame rate. With this system, we performed a series of in vivo experiments to visualize the retinal microvasculature in humans. Two featured imaging protocols are utilized. The first is of the low lateral resolution (16 μm) and a wide field of view (4 × 3 mm(2) with single scan and 7 × 8 mm(2) for multiple scans), while the second is of the high lateral resolution (5 μm) and a narrow field of view (1.5 × 1.2 mm(2) with single scan). The great imaging performance delivered by our system suggests that UHS-OMAG can be a promising noninvasive alternative to the current clinical retinal microvasculature imaging techniques for the diagnosis of eye diseases with significant vascular involvement, such as diabetic retinopathy and age-related macular degeneration.

          Related collections

          Author and article information

          Journal
          J Biomed Opt
          Journal of biomedical optics
          SPIE-Intl Soc Optical Eng
          1560-2281
          1083-3668
          Oct 2011
          : 16
          : 10
          Affiliations
          [1 ] University of Washington, Department of Bioengineering, Seattle, Washington 98195, USA.
          Article
          10.1117/1.3642638
          3221710
          22029360
          79faa9d2-1366-4f32-b217-06992bc087ca
          History

          Comments

          Comment on this article