84
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      OptCom: A Multi-Level Optimization Framework for the Metabolic Modeling and Analysis of Microbial Communities

      research-article
      , *
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microorganisms rarely live isolated in their natural environments but rather function in consolidated and socializing communities. Despite the growing availability of high-throughput sequencing and metagenomic data, we still know very little about the metabolic contributions of individual microbial players within an ecological niche and the extent and directionality of interactions among them. This calls for development of efficient modeling frameworks to shed light on less understood aspects of metabolism in microbial communities. Here, we introduce OptCom, a comprehensive flux balance analysis framework for microbial communities, which relies on a multi-level and multi-objective optimization formulation to properly describe trade-offs between individual vs. community level fitness criteria. In contrast to earlier approaches that rely on a single objective function, here, we consider species-level fitness criteria for the inner problems while relying on community-level objective maximization for the outer problem. OptCom is general enough to capture any type of interactions (positive, negative or combinations thereof) and is capable of accommodating any number of microbial species (or guilds) involved. We applied OptCom to quantify the syntrophic association in a well-characterized two-species microbial system, assess the level of sub-optimal growth in phototrophic microbial mats, and elucidate the extent and direction of inter-species metabolite and electron transfer in a model microbial community. We also used OptCom to examine addition of a new member to an existing community. Our study demonstrates the importance of trade-offs between species- and community-level fitness driving forces and lays the foundation for metabolic-driven analysis of various types of interactions in multi-species microbial systems using genome-scale metabolic models.

          Author Summary

          Microorganisms rarely live isolated in their natural environments but rather function in consolidated and socializing communities. Despite the growing availability of experimental data, we still know very little about the metabolic contributions of individual species within an ecological niche and the extent and directionality of interactions among them. This calls for development of efficient modeling frameworks to shed light on less understood aspects of metabolism in microbial communities. Here, we introduce OptCom, a comprehensive mathematical framework for metabolic modeling and analysis of microbial communities, which relies on a multi-level/objective optimization formulation to properly describe trade-offs between individual vs. community level fitness criteria. OptCom is general enough to capture any type of interactions (positive, negative or combinations thereof) and is capable of accommodating any number of microbial species involved. We first demonstrate the capability of OptCom to quantify known metabolic interactions in a well-characterized microbial community. We next apply it to more complex communities to assess the optimality levels of growth for each microorganism, elucidate the extent and direction of inter-species metabolite transfers and examine addition of a new member to an existing community. Our study lays the foundation for metabolic-driven analysis of various types of interactions in multi-species microbial systems.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of optimality in natural and perturbed metabolic networks.

          An important goal of whole-cell computational modeling is to integrate detailed biochemical information with biological intuition to produce testable predictions. Based on the premise that prokaryotes such as Escherichia coli have maximized their growth performance along evolution, flux balance analysis (FBA) predicts metabolic flux distributions at steady state by using linear programming. Corroborating earlier results, we show that recent intracellular flux data for wild-type E. coli JM101 display excellent agreement with FBA predictions. Although the assumption of optimality for a wild-type bacterium is justifiable, the same argument may not be valid for genetically engineered knockouts or other bacterial strains that were not exposed to long-term evolutionary pressure. We address this point by introducing the method of minimization of metabolic adjustment (MOMA), whereby we test the hypothesis that knockout metabolic fluxes undergo a minimal redistribution with respect to the flux configuration of the wild type. MOMA employs quadratic programming to identify a point in flux space, which is closest to the wild-type point, compatibly with the gene deletion constraint. Comparing MOMA and FBA predictions to experimental flux data for E. coli pyruvate kinase mutant PB25, we find that MOMA displays a significantly higher correlation than FBA. Our method is further supported by experimental data for E. coli knockout growth rates. It can therefore be used for predicting the behavior of perturbed metabolic networks, whose growth performance is in general suboptimal. MOMA and its possible future extensions may be useful in understanding the evolutionary optimization of metabolism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-throughput generation, optimization and analysis of genome-scale metabolic models.

            Genome-scale metabolic models have proven to be valuable for predicting organism phenotypes from genotypes. Yet efforts to develop new models are failing to keep pace with genome sequencing. To address this problem, we introduce the Model SEED, a web-based resource for high-throughput generation, optimization and analysis of genome-scale metabolic models. The Model SEED integrates existing methods and introduces techniques to automate nearly every step of this process, taking approximately 48 h to reconstruct a metabolic model from an assembled genome sequence. We apply this resource to generate 130 genome-scale metabolic models representing a taxonomically diverse set of bacteria. Twenty-two of the models were validated against available gene essentiality and Biolog data, with the average model accuracy determined to be 66% before optimization and 87% after optimization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Emergent biogeography of microbial communities in a model ocean.

              A marine ecosystem model seeded with many phytoplankton types, whose physiological traits were randomly assigned from ranges defined by field and laboratory data, generated an emergent community structure and biogeography consistent with observed global phytoplankton distributions. The modeled organisms included types analogous to the marine cyanobacterium Prochlorococcus. Their emergent global distributions and physiological properties simultaneously correspond to observations. This flexible representation of community structure can be used to explore relations between ecosystems, biogeochemical cycles, and climate change.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                February 2012
                February 2012
                2 February 2012
                : 8
                : 2
                : e1002363
                Affiliations
                [1]Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
                University of Illinois at Urbana-Champaign, United States of America
                Author notes

                Conceived and designed the experiments: CDM ARZ. Performed the experiments: ARZ. Analyzed the data: ARZ. Contributed reagents/materials/analysis tools: ARZ CDM. Wrote the paper: ARZ CDM.

                Article
                PCOMPBIOL-D-11-01078
                10.1371/journal.pcbi.1002363
                3271020
                22319433
                79fd5df4-9cdc-472e-81ad-27d49ea2a689
                Zomorrodi, Maranas. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 22 July 2011
                : 12 December 2011
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Computational Biology

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article