13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Auxin: a molecular trigger of seed development

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review by Figueiredo and Köhler describes the molecular mechanisms driving seed development. They review the role of the hormone auxin for the initial development of the three seed structures and as a trigger of fertilization-independent seed development.

          Abstract

          The evolution of seeds defines a remarkable landmark in the history of land plants. A developing seed contains three genetically distinct structures: the embryo, the nourishing tissue, and the seed coat. While fertilization is necessary to initiate seed development in most plant species, apomicts have evolved mechanisms allowing seed formation independently of fertilization. Despite their socio–economical relevance, the molecular mechanisms driving seed development have only recently begun to be understood. Here we review the current knowledge on the role of the hormone auxin for the initial development of the three seed structures and as a trigger of fertilization-independent seed development.

          Related collections

          Most cited references146

          • Record: found
          • Abstract: found
          • Article: not found

          TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development.

          Plants have evolved a tremendous ability to respond to environmental changes by adapting their growth and development. The interaction between hormonal and developmental signals is a critical mechanism in the generation of this enormous plasticity. A good example is the response to the hormone ethylene that depends on tissue type, developmental stage, and environmental conditions. By characterizing the Arabidopsis wei8 mutant, we have found that a small family of genes mediates tissue-specific responses to ethylene. Biochemical studies revealed that WEI8 encodes a long-anticipated tryptophan aminotransferase, TAA1, in the essential, yet genetically uncharacterized, indole-3-pyruvic acid (IPA) branch of the auxin biosynthetic pathway. Analysis of TAA1 and its paralogues revealed a link between local auxin production, tissue-specific ethylene effects, and organ development. Thus, the IPA route of auxin production is key to generating robust auxin gradients in response to environmental and developmental cues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomic imprinting in mammals.

            Genomic imprinting affects a subset of genes in mammals and results in a monoallelic, parental-specific expression pattern. Most of these genes are located in clusters that are regulated through the use of insulators or long noncoding RNAs (lncRNAs). To distinguish the parental alleles, imprinted genes are epigenetically marked in gametes at imprinting control elements through the use of DNA methylation at the very least. Imprinted gene expression is subsequently conferred through lncRNAs, histone modifications, insulators, and higher-order chromatin structure. Such imprints are maintained after fertilization through these mechanisms despite extensive reprogramming of the mammalian genome. Genomic imprinting is an excellent model for understanding mammalian epigenetic regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Auxin control of root development.

              A plant's roots system determines both the capacity of a sessile organism to acquire nutrients and water, as well as providing a means to monitor the soil for a range of environmental conditions. Since auxins were first described, there has been a tight connection between this class of hormones and root development. Here we review some of the latest genetic, molecular, and cellular experiments that demonstrate the importance of generating and maintaining auxin gradients during root development. Refinements in the ability to monitor and measure auxin levels in root cells coupled with advances in our understanding of the sources of auxin that contribute to these pools represent important contributions to our understanding of how this class of hormones participates in the control of root development. In addition, we review the role of identified molecular components that convert auxin gradients into local differentiation events, which ultimately defines the root architecture.
                Bookmark

                Author and article information

                Journal
                Genes Dev
                Genes Dev
                genesdev
                genesdev
                GAD
                Genes & Development
                Cold Spring Harbor Laboratory Press
                0890-9369
                1549-5477
                1 April 2018
                : 32
                : 7-8
                : 479-490
                Affiliations
                Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-750 07, Sweden
                Author notes
                Corresponding author: claudia.kohler@ 123456slu.se
                Author information
                http://orcid.org/0000-0002-2619-4857
                Article
                8711660
                10.1101/gad.312546.118
                5959232
                29692356
                7a1a70df-7e45-4519-a26b-9f0b4b2f0cac
                © 2018 Figueiredo and Köhler; Published by Cold Spring Harbor Laboratory Press

                This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

                History
                Page count
                Pages: 12
                Funding
                Funded by: Swedish Science Foundation
                Funded by: Knut and Alice Wallenberg Foundation , open-funder-registry 10.13039/501100004063;
                Categories
                12
                Review

                auxin,seed,endosperm,seed coat,apomixis,polycomb group
                auxin, seed, endosperm, seed coat, apomixis, polycomb group

                Comments

                Comment on this article