179
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification and Evolution of the Silkworm Helitrons and their Contribution to Transcripts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, we developed a structure-based approach to identify Helitrons in four lepidopterans and systematically analysed Helitrons in the silkworm genome. We found that the content of Helitrons varied greatly among genomes. The silkworm genome harboured 67 555 Helitron-related sequences that could be classified into 21 families and accounted for ∼4.23% of the genome. Thirteen of the families were new. Three families were putatively autonomous and included the replication initiator motif and helicase domain. The silkworm Helitrons were widely and randomly distributed in the genome. Most Helitron families radiated within the past 2 million years and experienced a single burst of expansion. These Helitron families captured 3724 gene fragments and contributed to at least 1.4% of the silkworm full-length cDNAs, suggesting important roles of Helitrons in the evolution of the silkworm genes. In addition, we found that some new Helitrons were generated by combinations of other Helitrons. Overall, the results presented in this study provided insights into the generation and evolution of Helitron transposons and their contribution to transcripts.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          ISfinder: the reference centre for bacterial insertion sequences

          ISfinder () is a dedicated database for bacterial insertion sequences (ISs). It has superseded the Stanford reference center. One of its functions is to assign IS names and to provide a focal point for a coherent nomenclature. It is also the repository for ISs. Each new IS is indexed together with information such as its DNA sequence and open reading frames or potential coding sequences, the sequence of the ends of the element and target sites, its origin and distribution together with a bibliography where available. Another objective is to continuously monitor ISs to provide updated comprehensive groupings or families and to provide some insight into their phylogenies. The site also contains extensive background information on ISs and transposons in general. Online tools are gradually being added. At present an online Blast facility against the entire bank is available. But additional features will include alignment capability, PsiBLAST and HMM profiles. ISfinder also includes a section on bacterial genomes and is involved in annotating the IS content of these genomes. Finally, this database is currently recommended by several microbiology journals for registration of new IS elements before their publication.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Arlequin (version 3.0): An integrated software package for population genetics data analysis

            Arlequin ver 3.0 is a software package integrating several basic and advanced methods for population genetics data analysis, like the computation of standard genetic diversity indices, the estimation of allele and haplotype frequencies, tests of departure from linkage equilibrium, departure from selective neutrality and demographic equilibrium, estimation or parameters from past population expansions, and thorough analyses of population subdivision under the AMOVA framework. Arlequin 3 introduces a completely new graphical interface written in C++, a more robust semantic analysis of input files, and two new methods: a Bayesian estimation of gametic phase from multi-locus genotypes, and an estimation of the parameters of an instantaneous spatial expansion from DNA sequence polymorphism. Arlequin can handle several data types like DNA sequences, microsatellite data, or standard multi-locus genotypes. A Windows version of the software is freely available on http://cmpg.unibe.ch/software/arlequin3.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization.

              Sea anemones are seemingly primitive animals that, along with corals, jellyfish, and hydras, constitute the oldest eumetazoan phylum, the Cnidaria. Here, we report a comparative analysis of the draft genome of an emerging cnidarian model, the starlet sea anemone Nematostella vectensis. The sea anemone genome is complex, with a gene repertoire, exon-intron structure, and large-scale gene linkage more similar to vertebrates than to flies or nematodes, implying that the genome of the eumetazoan ancestor was similarly complex. Nearly one-fifth of the inferred genes of the ancestor are eumetazoan novelties, which are enriched for animal functions like cell signaling, adhesion, and synaptic transmission. Analysis of diverse pathways suggests that these gene "inventions" along the lineage leading to animals were likely already well integrated with preexisting eukaryotic genes in the eumetazoan progenitor.
                Bookmark

                Author and article information

                Journal
                DNA Res
                DNA Res
                dnares
                dnares
                DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes
                Oxford University Press
                1340-2838
                1756-1663
                October 2013
                14 June 2013
                14 June 2013
                : 20
                : 5
                : 471-484
                Affiliations
                [1 ]State Key Laboratory of Silkworm Genome Biology, The Key Sericultural Laboratory of Agricultural Ministry, Southwest University , Chongqing400715, China
                [2 ]School of Life Sciences, Chongqing University , Chongqing400044, China
                Author notes
                [* ]To whom correspondence should be addressed. Tel. +86-23-65122685. E-mail: zezhang@ 123456cqu.edu.cn , ze_zhang@ 123456126.com
                Article
                dst024
                10.1093/dnares/dst024
                3789558
                23771679
                7a271400-490a-43fd-a41b-fb51572819b8
                © The Author 2013. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 December 2012
                : 16 May 2013
                Categories
                Full Papers

                Genetics
                helitron,silkworm,gene fragment acquisition,evolution,transcript
                Genetics
                helitron, silkworm, gene fragment acquisition, evolution, transcript

                Comments

                Comment on this article