6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Upregulation of Transient Receptor Potential Canonical Type 3 Channel via AT1R/TGF- β1/Smad2/3 Induces Atrial Fibrosis in Aging and Spontaneously Hypertensive Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fibroblast proliferation and migration are central in atrial fibrillation (AF) promoting structure remodeling, which is strongly associated with aging and hypertension. Transient receptor potential canonical-3 channel (TRPC3) is a key mediator of cardiac fibrosis and the pathogenesis of AF. Here, we have observed the increased TRPC3 expression that induced atrial fibrosis which possibly is either mediated by the aging process or related to hypertensive progression. In this study, we measured the pathological structure remodeling by H&E staining, Masson staining, and transmission electron microscope (TEM). The protein expression levels of fibrotic biomarkers and TRPC3 were measured by Western blotting with atrial tissues from normotensive Wistar Kyoto rats (WKY 4m-o (4 months old)), old WKY (WKY 24m-o (24 months old)), spontaneously hypertensive rat (SHR 4m-o (4 months old)), and old SHR (SHR 24m-o (24 months old)). To illuminate the molecular mechanism of TRPC3 in atrial fibrosis of aging rats and SHR, we detected the inhibited role of TRPC3 selective blocker ethyl-1-(4-(2,3,3-trichloroacrylamide) phenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carboxylate,pyrazole-3 (Pyr3) on angiotensin II (Ang II) induced fibrosis in neonatal rat atrial fibroblasts. The pathological examination showed that the extracellular matrix (ECM) and collagen fibrils were markedly increased in atrial tissues from aged and hypertensive rats. The protein expressions of fibrotic biomarkers (collagen I, collagen III, and transforming growth factor- β1 (TGF- β1)) were significantly upregulated in atrial tissues from the WKY 24m-o group, SHR 4m-o group, and SHR 24m-o group compared with the WKY 4m-o group. Meanwhile, the expression level of TRPC3 was significantly upregulated in WKY 24m-o and SHR 4m-o atrial tissues compared to WKY 4m-o rats. In isolated and cultured neonatal rat atrial fibroblasts, Ang II induced the atrial fibroblast migration and proliferation and upregulated the expression levels of TRPC3 and fibrotic biomarkers. TRPC3 selected blocker Pyr3 attenuated the migration and proliferation in neonatal rat atrial fibroblasts. Furthermore, Pyr3 significantly alleviated Ang II-induced upregulation of TRPC3, collagen I, collagen III, and TGF- β1 through the molecular mechanism of the TGF- β/Smad2/3 signaling pathway. Similarly, knocking down TRPC3 using short hairpin RNA (shTRPC3) also attenuated Ang II-induced upregulation of TGF- β1. Pyr3 preconditioning decreased Ang II-induced intracellular Ca 2+ transient amplitude elevation. Furthermore, AT1 receptor was involved in Ang II-induced TRPC3 upregulation. Hence, upregulation of TRPC3 in aging and hypertension is involved in an atrial fibrosis process. Inhibition of TRPC3 contributes to reverse Ang II-induced fibrosis. TRPC3 may be a potential therapeutic target for preventing fibrosis in aging and hypertension.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Global epidemiology of atrial fibrillation.

          Atrial fibrillation (AF) is a major public health burden worldwide, and its prevalence is set to increase owing to widespread population ageing, especially in rapidly developing countries such as Brazil, China, India, and Indonesia. Despite the availability of epidemiological data on the prevalence of AF in North America and Western Europe, corresponding data are limited in Africa, Asia, and South America. Moreover, other observations suggest that the prevalence of AF might be underestimated-not only in low-income and middle-income countries, but also in their high-income counterparts. Future studies are required to provide precise estimations of the global AF burden, identify important risk factors in various regions worldwide, and take into consideration regional and ethnic variations in AF. Furthermore, in response to the increasing prevalence of AF, additional resources will need to be allocated globally for prevention and treatment of AF and its associated complications. In this Review, we discuss the available data on the global prevalence, risk factors, management, financial costs, and clinical burden of AF, and highlight the current worldwide inadequacy of its treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cardiac Fibrosis in Patients With Atrial Fibrillation: Mechanisms and Clinical Implications.

            Atrial fibrillation (AF) is associated with structural, electrical, and contractile remodeling of the atria. Development and progression of atrial fibrosis is the hallmark of structural remodeling in AF and is considered the substrate for AF perpetuation. In contrast, experimental and clinical data on the effect of ventricular fibrotic processes in the pathogenesis of AF and its complications are controversial. Ventricular fibrosis seems to contribute to abnormalities in cardiac relaxation and contractility and to the development of heart failure, a common finding in AF. Given that AF and heart failure frequently coexist and that both conditions affect patient prognosis, a better understanding of the mutual effect of fibrosis in AF and heart failure is of particular interest. In this review paper, we provide an overview of the general mechanisms of cardiac fibrosis in AF, differences between fibrotic processes in atria and ventricles, and the clinical and prognostic significance of cardiac fibrosis in AF.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Vascular Fibrosis in Aging and Hypertension: Molecular Mechanisms and Clinical Implications

              Aging is the primary risk factor underlying hypertension and incident cardiovascular disease. With aging, the vasculature undergoes structural and functional changes characterized by endothelial dysfunction, wall thickening, reduced distensibility, and arterial stiffening. Vascular stiffness results from fibrosis and extracellular matrix (ECM) remodelling, processes that are associated with aging and are amplified by hypertension. Some recently characterized molecular mechanisms underlying these processes include increased expression and activation of matrix metalloproteinases, activation of transforming growth factor-β1/SMAD signalling, upregulation of galectin-3, and activation of proinflammatory and profibrotic signalling pathways. These events can be induced by vasoactive agents, such as angiotensin II, endothelin-1, and aldosterone, which are increased in the vasculature during aging and hypertension. Complex interplay between the “aging process” and prohypertensive factors results in accelerated vascular remodelling and fibrosis and increased arterial stiffness, which is typically observed in hypertension. Because the vascular phenotype in a young hypertensive individual resembles that of an elderly otherwise healthy individual, the notion of “early” or “premature” vascular aging is now often used to describe hypertension-associated vascular disease. We review the vascular phenotype in aging and hypertension, focusing on arterial stiffness and vascular remodelling. We also highlight the clinical implications of these processes and discuss some novel molecular mechanisms of fibrosis and ECM reorganization.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2019
                23 November 2019
                : 2019
                : 4025496
                Affiliations
                1Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
                2Infectious Disease Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
                3Affiliated Hospital of Southwest Medical College, Cardiothoracic Surgery, Luzhou 646000, China
                Author notes

                Guest Editor: Huai-Rong Luo

                Author information
                https://orcid.org/0000-0003-3029-8293
                https://orcid.org/0000-0001-9907-6096
                https://orcid.org/0000-0002-5019-4232
                Article
                10.1155/2019/4025496
                6906806
                31871548
                7a2eb3b4-cb7c-4007-9780-0addd79955dd
                Copyright © 2019 Rongfang He et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 May 2019
                : 11 August 2019
                : 13 September 2019
                Funding
                Funded by: Department of Science and Technology of Sichuan Province
                Award ID: 19YYJC1958
                Funded by: Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province
                Funded by: National Natural Science Foundation of China
                Award ID: 81470022
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article