59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fidelity approach to quantum phase transitions

      Preprint

      Read this article at

      ScienceOpenPublisherArXiv
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We review briefly the quantum fidelity approach to quantum phase transitions in a pedagogical manner. We try to relate all established but scattered results on the leading term of the fidelity into a systematic theoretical framework, which might provide an alternative paradigm for understanding quantum critical phenomena. The definition of the fidelity and the scaling behavior of its leading term, as well as their explicit applications to the one-dimensional transverse-field Ising model and the Lipkin-Meshkov-Glick model, are introduced at the graduate-student level. In addition, we survey also other types of fidelity approach, such as the fidelity per site, reduced fidelity, thermal-state fidelity, operator fidelity, etc; as well as relevant works on the fidelity approach to quantum phase transitions occurring in various many-body systems.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Entanglement of Formation of an Arbitrary State of Two Qubits

          The entanglement of a pure state of a pair of quantum systems is defined as the entropy of either member of the pair. The entanglement of formation of a mixed state is defined as the minimum average entanglement of an ensemble of pure states that represents the given mixed state. An earlier paper [Phys. Rev. Lett. 78, 5022 (1997)] conjectured an explicit formula for the entanglement of formation of a pair of binary quantum objects (qubits) as a function of their density matrix, and proved the formula to be true for a special class of mixed states. The present paper extends the proof to arbitrary states of this system and shows how to construct entanglement-minimizing pure-state decompositions.
            • Record: found
            • Abstract: not found
            • Article: not found

            Field Dependence of the Intrinsic Domain Magnetization of a Ferromagnet

              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Entanglement Measures and Purification Procedures

              We generalize previously proposed conditions each measure of entanglement has to satisfy. We present a class of entanglement measures that satisfy these conditions and show that the Quantum Relative Entropy and Bures Metric generate two measures of this class. We calculate the measures of entanglement for a number of mixed two spin 1/2 systems using the Quantum Relative Entropy, and provide an efficient numerical method to obtain the measures of entanglement in this case. In addition, we prove a number of properties of our entanglement measure which have important physical implications. We briefly explain the statistical basis of our measure of entanglement in the case of the Quantum Relative Entropy. We then argue that our entanglement measure determines an upper bound to the number of singlets that can be obtained by any purification procedure and that distillable entanglement is in general smaller than the entanglement of creation.

                Author and article information

                Journal
                19 November 2008
                Article
                10.1142/S0217979210056335
                0811.3127
                7a4b197c-76db-444d-b6c4-2b9dc4777cb3

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Int. J. Mod. Phys. B 24, 4371(2010)
                41 pages, 31 figures. We apologize if we omit acknowledging your relevant works. Do tell. An updated version with clearer figures can be found at: http://www.phy.cuhk.edu.hk/~sjgu/fidelitynote.pdf
                quant-ph cond-mat.stat-mech

                Comments

                Comment on this article

                Related Documents Log