99
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiR-21: an environmental driver of malignant melanoma?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since the mid-1950’s, melanoma incidence has been rising steadily in industrialized Caucasian populations, thereby pointing to the pivotal involvement of environmental factors in melanomagenesis. Recent evidence underlines the crucial role of microRNA (miR) signaling in cancer initiation and progression. Increased miR-21 expression has been observed during the transition from a benign melanocytic lesion to malignant melanoma, exhibiting highest expression of miR-21. Notably, common BRAF and NRAS mutations in cutaneous melanoma are associated with increased miR-21 expression. MiR-21 is an oncomiR that affects critical target genes of malignant melanoma, resulting in sustained proliferation (PTEN, PI3K, Sprouty, PDCD4, FOXO1, TIPE2, p53, cyclin D1), evasion from apoptosis (FOXO1, FBXO11, APAF1, TIMP3, TIPE2), genetic instability (MSH2, FBXO11, hTERT), increased oxidative stress (FOXO1), angiogenesis (PTEN, HIF1α, TIMP3), invasion and metastasis (APAF1, PTEN, PDCD4, TIMP3). The purpose of this review is to provide translational evidence for major environmental and individual factors that increase the risk of melanoma, such as UV irradiation, chemical noxes, air pollution, smoking, chronic inflammation, Western nutrition, obesity, sedentary lifestyle and higher age, which are associated with increased miR-21 signaling. Exosomal miR-21 induced by extrinsic and intrinsic stimuli may be superimposed on mutation-induced miR-21 pathways of melanoma cells. Thus, oncogenic miR-21 signaling may be the converging point of intrinsic and extrinsic stimuli driving melanomagenesis. Future strategies of melanoma treatment and prevention should thus aim at reducing the burden of miR-21 signal transduction.

          Related collections

          Most cited references209

          • Record: found
          • Abstract: found
          • Article: not found

          miR-21-mediated tumor growth.

          MicroRNAs (miRNAs) are approximately 22 nucleotide non-coding RNA molecules that regulate gene expression post-transcriptionally. Although aberrant expression of miRNAs in various human cancers suggests a role for miRNAs in tumorigenesis, it remains largely unclear as to whether knockdown of a specific miRNA affects tumor growth. In this study, we profiled miRNA expression in matched normal breast tissue and breast tumor tissues by TaqMan real-time polymerase chain reaction miRNA array methods. Consistent with previous findings, we found that miR-21 was highly overexpressed in breast tumors compared to the matched normal breast tissues among 157 human miRNAs analysed. To better evaluate the role of miR-21 in tumorigenesis, we transfected breast cancer MCF-7 cells with anti-miR-21 oligonucleotides and found that anti-miR-21 suppressed both cell growth in vitro and tumor growth in the xenograft mouse model. Furthermore, this anti-miR-21-mediated cell growth inhibition was associated with increased apoptosis and decreased cell proliferation, which could be in part owing to downregulation of the antiapoptotic Bcl-2 in anti-miR-21-treated tumor cells. Together, these results suggest that miR-21 functions as an oncogene and modulates tumorigenesis through regulation of genes such as bcl-2 and thus, it may serve as a novel therapeutic target.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SMAD proteins control DROSHA-mediated microRNA maturation.

            MicroRNAs (miRNAs) are small non-coding RNAs that participate in the spatiotemporal regulation of messenger RNA and protein synthesis. Aberrant miRNA expression leads to developmental abnormalities and diseases, such as cardiovascular disorders and cancer; however, the stimuli and processes regulating miRNA biogenesis are largely unknown. The transforming growth factor beta (TGF-beta) and bone morphogenetic protein (BMP) family of growth factors orchestrates fundamental biological processes in development and in the homeostasis of adult tissues, including the vasculature. Here we show that induction of a contractile phenotype in human vascular smooth muscle cells by TGF-beta and BMPs is mediated by miR-21. miR-21 downregulates PDCD4 (programmed cell death 4), which in turn acts as a negative regulator of smooth muscle contractile genes. Surprisingly, TGF-beta and BMP signalling promotes a rapid increase in expression of mature miR-21 through a post-transcriptional step, promoting the processing of primary transcripts of miR-21 (pri-miR-21) into precursor miR-21 (pre-miR-21) by the DROSHA (also known as RNASEN) complex. TGF-beta- and BMP-specific SMAD signal transducers are recruited to pri-miR-21 in a complex with the RNA helicase p68 (also known as DDX5), a component of the DROSHA microprocessor complex. The shared cofactor SMAD4 is not required for this process. Thus, regulation of miRNA biogenesis by ligand-specific SMAD proteins is critical for control of the vascular smooth muscle cell phenotype and potentially for SMAD4-independent responses mediated by the TGF-beta and BMP signalling pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer.

              A transient inflammatory signal can initiate an epigenetic switch from nontransformed to cancer cells via a positive feedback loop involving NF-kappaB, Lin28, let-7, and IL-6. We identify differentially regulated microRNAs important for this switch and putative transcription factor binding sites in their promoters. STAT3, a transcription factor activated by IL-6, directly activates miR-21 and miR-181b-1. Remarkably, transient expression of either microRNA induces the epigenetic switch. MiR-21 and miR-181b-1, respectively, inhibit PTEN and CYLD tumor suppressors, leading to increased NF-kappaB activity required to maintain the transformed state. These STAT3-mediated regulatory circuits are required for the transformed state in diverse cell lines and tumor growth in xenografts, and their transcriptional signatures are observed in colon adenocarcinomas. Thus, STAT3 is not only a downstream target of IL-6 but, with miR-21, miR-181b-1, PTEN, and CYLD, is part of the positive feedback loop that underlies the epigenetic switch that links inflammation to cancer. Copyright (c) 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                melnik@t-online.de
                Journal
                J Transl Med
                J Transl Med
                Journal of Translational Medicine
                BioMed Central (London )
                1479-5876
                27 June 2015
                27 June 2015
                2015
                : 13
                : 202
                Affiliations
                Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, 49090 Osnabrück, Germany
                Article
                570
                10.1186/s12967-015-0570-5
                4482047
                26116372
                7a4e5e75-99c0-4894-ba6d-997c6ada7634
                © Melnik. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 1 March 2015
                : 10 June 2015
                Categories
                Review
                Custom metadata
                © The Author(s) 2015

                Medicine
                environment,exosome,inflammation,melanoma,milk,mir-21,obesity,pollution,uv-irradiation,western lifestyle
                Medicine
                environment, exosome, inflammation, melanoma, milk, mir-21, obesity, pollution, uv-irradiation, western lifestyle

                Comments

                Comment on this article