+1 Recommend
2 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of live and heat-inactivated E. coli strains and their supernatants on immune regulation in HT-29 cells

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Probiotics are considered to have a beneficial impact on humans, but in some cases, administration of live microorganisms might be risky. In the present study, immunomodulatory effects of different Escherichia coli strains and their supernatants were examined under different inflammatory conditions with living and heat-inactivated strains. HT-29 cells were incubated with E. coli strains (S2-G1, S2-G3, S2-G4 and S2-G8) and their supernatants with or without stimulation with tumor necrosis factor alpha (TNF-α) or interleukin (IL)-1β. Quantification of IL-8 secretion and gene expression was performed by enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (PCR). IL-8 secretion by TNF-α- and IL-1β-stimulated cells was attenuated by all four live strains. In contrast, heat inactivation resulted in an elevated IL-8 expression and secretion in unstimulated cells and did not maintain the anti-inflammatory effect of live bacteria in cytokine-stimulated cells. The supernatant of the live S2-G3 led to an elevated IL-8 secretion in unstimulated and IL-1β-stimulated cells but not in TNF-α-stimulated cells. Live bacteria of all strains might induce an immunosuppressive effect after stimulation of HT-29 cells, whereas heat inactivation and the supernatant seem to induce an elevated immune response. These findings might have an impact depending on the indication and purpose of administration.

          Related collections

          Most cited references 43

          • Record: found
          • Abstract: found
          • Article: not found

          Bacterial adhesins in host-microbe interactions.

          Most commensal and pathogenic bacteria interacting with eukaryotic hosts express adhesive molecules on their surfaces that promote interaction with host cell receptors or with soluble macromolecules. Even though bacterial attachment to epithelial cells may be beneficial for bacterial colonization, adhesion may come at a cost because bacterial attachment to immune cells can facilitate phagocytosis and clearing. Many pathogenic bacteria have solved this dilemma by producing an antiphagocytic surface layer usually consisting of polysaccharide and by expressing their adhesins on polymeric structures that extend out from the cell surface. In this review, we will focus on the interaction between bacterial adhesins and the host, with an emphasis on pilus-like structures.
            • Record: found
            • Abstract: found
            • Article: not found

            A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion.

            Pathogenic bacteria that penetrate the intestinal epithelial barrier stimulate an inflammatory response in the adjacent intestinal mucosa. The present studies asked whether colon epithelial cells can provide signals that are important for the initiation and amplification of an acute mucosal inflammatory response. Infection of monolayers of human colon epithelial cell lines (T84, HT29, Caco-2) with invasive strains of bacteria (Salmonella dublin, Shigella dysenteriae, Yersinia enterocolitica, Listeria monocytogenes, enteroinvasive Escherichia coli) resulted in the coordinate expression and upregulation of a specific array of four proinflammatory cytokines, IL-8, monocyte chemotactic protein-1, GM-CSF, and TNF alpha, as assessed by mRNA levels and cytokine secretion. Expression of the same cytokines was upregulated after TNF alpha or IL-1 stimulation of these cells. In contrast, cytokine gene expression was not altered after infection of colon epithelial cells with noninvasive bacteria or the noninvasive protozoan parasite, G. lamblia. Notably, none of the cell lines expressed mRNA for IL-2, IL-4, IL-5, IL-6, IL-12p40, IFN-gamma, or significant levels of IL-1 or IL-10 in response to the identical stimuli. The coordinate expression of IL-8, MCP-1, GM-CSF and TNF alpha appears to be a general property of human colon epithelial cells since an identical array of cytokines, as well as IL-6, also was expressed by freshly isolated human colon epithelial cells. Since the cytokines expressed in response to bacterial invasion or other proinflammatory agonists have a well documented role in chemotaxis and activation of inflammatory cells, colon epithelial cells appear to be programmed to provide a set of signals for the activation of the mucosal inflammatory response in the earliest phases after microbial invasion.
              • Record: found
              • Abstract: found
              • Article: not found

              Intestinal bacteria and the regulation of immune cell homeostasis.

               D. Hill,  David Artis (2009)
              The human intestine is colonized by an estimated 100 trillion bacteria. Some of these bacteria are essential for normal physiology, whereas others have been implicated in the pathogenesis of multiple inflammatory diseases including IBD and asthma. This review examines the influence of signals from intestinal bacteria on the homeostasis of the mammalian immune system in the context of health and disease. We review the bacterial composition of the mammalian intestine, known bacterial-derived immunoregulatory molecules, and the mammalian innate immune receptors that recognize them. We discuss the influence of bacterial-derived signals on immune cell function and the mechanisms by which these signals modulate the development and progression of inflammatory disease. We conclude with an examination of successes and future challenges in using bacterial communities or their products in the prevention or treatment of human disease.

                Author and article information

                European Journal of Microbiology and Immunology
                Akadémiai Kiadó
                June 2018
                : 8
                : 2
                : 41-46
                [ 1 ]Institute of Nutritional Science, Justus Liebig University Giessen , Wilhelmstrasse 20, D-35392 Giessen, Germany
                [ 2 ] SymbioPharm GmbH , Auf den Lueppen 10, D-35745 Herborn, Germany
                Author notes

                Correspondence: Christian.A.Zimmermann@ 123456ernaehrung.uni-giessen.de ; +49-(0)641-99-39056; +49-(0)641-99-39049

                © 2018 The Author(s)

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium for non-commercial purposes, provided the original author and source are credited, a link to the CC License is provided, and changes - if any - are indicated.

                Page count
                Pages: 6
                Original Research Paper


                Comment on this article