Blog
About

67
views
0
recommends
+1 Recommend
1 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Internal Tide Generation and Dissipation by Small Periodic Topography in Deep Ocean

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Internal tides generated by a rough sea floor are an important source of mixing in the abyssal ocean. Two linear models are employed to evaluate the conversion rate from barotropic tides to internal tides and the energy distribution in each mode. Considering the periodicity of internal tides, the topography is represented by periodically distributed knife edges and sinusoidal ridges within one wavelength of mode-1 internal tides. The knife edges generate greater internal tides than the sinusoidal ridges due to their sharp shape, which approximates an extremely supercritical condition. Energy flux concentrates in modes whose numbers are multiples of the knife edge or ridge number. Then, a fully nonlinear model that integrates viscosity and diffusion is implemented, and its results are compared with those of the linear model. Internal wave rays generated in the nonlinear model show a distribution similar to the linear models’ prediction. High dissipation rates coincide with the rays, suggesting that nonlinear wave-wave interaction is a dominant mechanism for internal tide dissipation in the abyssal ocean.

          Related collections

          Author and article information

          Journal
          JOUC
          Journal of Ocean University of China
          Science Press and Springer (China )
          1672-5182
          06 July 2019
          01 October 2019
          : 18
          : 4
          : 761-770
          Affiliations
          1Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
          2State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
          Author notes
          *Corresponding author: ZHU Xiaohua
          Article
          s11802-019-3966-7
          10.1007/s11802-019-3966-7
          Copyright © Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2019.

          The copyright to this article, including any graphic elements therein (e.g. illustrations, charts, moving images), is hereby assigned for good and valuable consideration to the editorial office of Journal of Ocean University of China, Science Press and Springer effective if and when the article is accepted for publication and to the extent assignable if assignability is restricted for by applicable law or regulations (e.g. for U.S. government or crown employees).

          Product
          Self URI (journal-page): https://www.springer.com/journal/11802

          Comments

          Comment on this article