15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biodistribution and clearance of a filamentous plant virus in healthy and tumor-bearing mice

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          Polymers at an interface; a simplified view

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo.

            In our previous study we reported that the interaction of nanoparticles with cells can be influenced by particle shape, but until now the effect of particle shape on in vivo behavior remained poorly understood. In the present study, we control the fabrication of fluorescent mesoporous silica nanoparticles (MSNs) by varying the concentration of reaction reagents especially to design a series of shapes. Two different shaped fluorescent MSNs (aspect ratios, 1.5, 5) were specially designed, and the effects of particle shape on biodistribution, clearance and biocompatibility in vivo were investigated. Organ distributions show that intravenously administrated MSNs are mainly present in the liver, spleen and lung (>80%) and there is obvious particle shape effects on in vivo behaviors. Short-rod MSNs are easily trapped in the liver, while long-rod MSNs distribute in the spleen. MSNs with both aspect ratios have a higher content in the lung after PEG modification. We also found MSNs are mainly excreted by urine and feces, and the clearance rate of MSNs is primarily dependent on the particle shape, where short-rod MSNs have a more rapid clearance rate than long-rod MSNs in both excretion routes. Hematology, serum biochemistry, and histopathology results indicate that MSNs would not cause significant toxicity in vivo, but there is potential induction of biliary excretion and glomerular filtration dysfunction. These findings may provide useful information for the design of nanoscale delivery systems and the environmental fate of nanoparticles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers.

              Carbon nanotubes (CNT) are intensively being developed for biomedical applications including drug and gene delivery. Although all possible clinical applications will require compatibility of CNT with the biological milieu, their in vivo capabilities and limitations have not yet been explored. In this work, water-soluble, single-walled CNT (SWNT) have been functionalized with the chelating molecule diethylentriaminepentaacetic (DTPA) and labeled with indium ((111)In) for imaging purposes. Intravenous (i.v.) administration of these functionalized SWNT (f-SWNT) followed by radioactivity tracing using gamma scintigraphy indicated that f-SWNT are not retained in any of the reticuloendothelial system organs (liver or spleen) and are rapidly cleared from systemic blood circulation through the renal excretion route. The observed rapid blood clearance and half-life (3 h) of f-SWNT has major implications for all potential clinical uses of CNT. Moreover, urine excretion studies using both f-SWNT and functionalized multiwalled CNT followed by electron microscopy analysis of urine samples revealed that both types of nanotubes were excreted as intact nanotubes. This work describes the pharmacokinetic parameters of i.v. administered functionalized CNT relevant for various therapeutic and diagnostic applications.
                Bookmark

                Author and article information

                Journal
                Nanomedicine
                Nanomedicine
                Future Medicine Ltd
                1743-5889
                1748-6963
                February 2014
                February 2014
                : 9
                : 2
                : 221-235
                Article
                10.2217/nnm.13.75
                7a66a8d2-f2fe-4435-8c59-f29225a427cb
                © 2014
                History

                Comments

                Comment on this article