Blog
About

4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Field scale evaluation of seaweed aquaculture as a nutrient bioextraction strategy in Long Island Sound and the Bronx River Estuary

      , ,

      Aquaculture

      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 32

          • Record: found
          • Abstract: found
          • Article: not found

          Spreading dead zones and consequences for marine ecosystems.

          Dead zones in the coastal oceans have spread exponentially since the 1960s and have serious consequences for ecosystem functioning. The formation of dead zones has been exacerbated by the increase in primary production and consequent worldwide coastal eutrophication fueled by riverine runoff of fertilizers and the burning of fossil fuels. Enhanced primary production results in an accumulation of particulate organic matter, which encourages microbial activity and the consumption of dissolved oxygen in bottom waters. Dead zones have now been reported from more than 400 systems, affecting a total area of more than 245,000 square kilometers, and are probably a key stressor on marine ecosystems.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Stable Isotopes in Ecosystem Studies

             B Peterson,  B Fry (1987)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              EFFECTS OF CLIMATE CHANGE ON GLOBAL SEAWEED COMMUNITIES.

              Seaweeds are ecologically important primary producers, competitors, and ecosystem engineers that play a central role in coastal habitats ranging from kelp forests to coral reefs. Although seaweeds are known to be vulnerable to physical and chemical changes in the marine environment, the impacts of ongoing and future anthropogenic climate change in seaweed-dominated ecosystems remain poorly understood. In this review, we describe the ways in which changes in the environment directly affect seaweeds in terms of their physiology, growth, reproduction, and survival. We consider the extent to which seaweed species may be able to respond to these changes via adaptation or migration. We also examine the extensive reshuffling of communities that is occurring as the ecological balance between competing species changes, and as top-down control by herbivores becomes stronger or weaker. Finally, we delve into some of the ecosystem-level responses to these changes, including changes in primary productivity, diversity, and resilience. Although there are several key areas in which ecological insight is lacking, we suggest that reasonable climate-related hypotheses can be developed and tested based on current information. By strategically prioritizing research in the areas of complex environmental variation, multiple stressor effects, evolutionary adaptation, and population, community, and ecosystem-level responses, we can rapidly build upon our current understanding of seaweed biology and climate change ecology to more effectively conserve and manage coastal ecosystems.
                Bookmark

                Author and article information

                Journal
                Aquaculture
                Aquaculture
                Elsevier BV
                00448486
                September 2014
                September 2014
                : 433
                :
                : 148-156
                10.1016/j.aquaculture.2014.05.034
                © 2014

                Comments

                Comment on this article