55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Grassmannian Graph Approach to Affine Invariant Feature Matching

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this work, we present a novel and practical approach to address one of the longstanding problems in computer vision: 2D and 3D affine invariant feature matching. Our Grassmannian Graph (GrassGraph) framework employs a two stage procedure that is capable of robustly recovering correspondences between two unorganized, affinely related feature (point) sets. The first stage maps the feature sets to an affine invariant Grassmannian representation, where the features are mapped into the same subspace. It turns out that coordinate representations extracted from the Grassmannian differ by an arbitrary orthonormal matrix. In the second stage, by approximating the Laplace-Beltrami operator (LBO) on these coordinates, this extra orthonormal factor is nullified, providing true affine-invariant coordinates which we then utilize to recover correspondences via simple nearest neighbor relations. The resulting GrassGraph algorithm is empirically shown to work well in non-ideal scenarios with noise, outliers, and occlusions. Our validation benchmarks use an unprecedented 440,000+ experimental trials performed on 2D and 3D datasets, with a variety of parameter settings and competing methods. State-of-the-art performance in the majority of these extensive evaluations confirm the utility of our method.

          Related collections

          Author and article information

          Journal
          2016-01-28
          2016-02-04
          Article
          1601.07648
          323aaa0c-14db-4727-bc73-d58d030a5a2c

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          cs.CV

          Computer vision & Pattern recognition
          Computer vision & Pattern recognition

          Comments

          Comment on this article