19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effect of Blood-Derived Products on the Chondrogenic and Osteogenic Differentiation Potential of Adipose-Derived Mesenchymal Stem Cells Originated from Three Different Locations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Adipose-derived mesenchymal stem cells (AD-MSCs) from fat tissue considered “surgical waste” during joint surgery may provide a potent source for regenerative medicine. Intra-articular, homologous fat tissue (Hoffa's fat pad, pouch fat) might possess a superior chondrogenic and osteogenic differentiation potential in comparison to extra-articular, nonhomologous fat. Blood products might further enhance this potential.

          Methods

          AD-MSCs were isolated from fat tissue of 3 donors from 3 locations each, during total knee replacement. Isolated cells were analyzed via flow cytometry. Cells were supplemented with blood products: two types of platelet-rich plasma (EPRP—PRP prepared in the presence of EDTA; CPRP—PRP prepared in the presence of citrate), hyperacute serum (hypACT), and standard fetal calf serum (FCS) as a positive control. The viability of the cells was determined by XTT assay, and the progress of differentiation was tested via histological staining and monitoring of specific gene expression.

          Results

          Blood products enhance ex vivo cell metabolism. Chondrogenesis is enhanced by EDTA-PRP and osteogenesis by citrate PRP, whereas hyperacute serum enhances both differentiations comparably. This finding was consistent in histological analysis as well as in gene expression. Lower blood product concentrations and shorter differentiation periods lead to superior histological results for chondrogenesis. Both PRP types had a different biological effect depending upon concentration, whereas hyperacute serum seemed to have a more consistent effect, independent of the used concentration.

          Conclusion

          (i) Blood product preparation method, (ii) type of anticoagulant, (iii) differentiation time, and (iv) blood product concentration have a significant influence on stem cell viability and the differentiation potential, favouring no use of anticoagulation, shorter differentiation time, and lower blood product concentrations. Cell-free blood products like hyperacute serum may be considered as an alternative supplementation in regenerative medicine, especially for stem cell therapies.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid phenotypic changes in passaged articular chondrocyte subpopulations.

          Articular chondrocytes are often expanded in vitro and then used to assist in healing articular cartilage defects. We investigated the extent of dedifferentiation in monolayer-passaged, zonal articular chondrocytes by using quantitative, real-time PCR. The relative gene expressions for collagen type I and II, aggrecan, and superficial zone protein were analyzed for relevant passage numbers (P0-P4) to determine how the expansion of chondrocytes affects the expression of cartilage extracellular matrix proteins. Results reveal that dramatic changes occur as early as first passage. Furthermore, these changes are shown to persist even when the expanded cells are encapsulated in 3D, alginate beads. Successful tissue engineering and autologous cell transplantation procedures rely heavily on having a cell source that expresses the chondrocytic phenotype. The results of this study suggest that major problems exist at the front-end of cartilage regeneration efforts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The in vitro effect of different PRP concentrations on osteoblasts and fibroblasts.

            The aim of this study was to assess the biological rationale for the use of platelet-rich plasma (PRP) by evaluating the effect of different concentrations of PRP on osteoblasts (OB) and fibroblasts (FB) function in vitro. PRP was obtained from volunteer donors using standard protocols. Primary human cultures of oral FBs and OBs were exposed to both activated and non-activated plasma as well as various concentrations of PRP (2.5 x, 3.5 x and max (4.2-5.5 x)). Cell proliferation was evaluated after 24 and 72 h using an MTT proliferation assay. Production of osteocalcin (OCN), osteoprotegerin (OPG) and transforming growth factor beta1 (TGF-beta1) was evaluated in OB after 24 and 72 h. Statistical analysis was performed using one-way ANOVA. PRP-stimulated cell proliferation in both OBs and FBs. The effect of different PRP concentrations on cell proliferation was most notable at 72 h. The maximum effect was achieved with a concentration of 2.5 x, with higher concentrations resulting in a reduction of cell proliferation. Upregulation of OCN levels and downregulation of OPG levels were noted with increasing PRP concentrations at both 24 and 72 h. TGF-beta1 levels were stimulated by increasing concentrations of PRP, with the increased levels being maintained at 72 h. PRP preparations exert a dose-specific effect on oral FBs and OBs. Optimal results were observed at a platelet concentration of 2.5 x, which was approximately half of the maximal concentrate that could be obtained. Increased concentrations resulted in a reduction in proliferation and a suboptimal effect on OB function. Hence, different PRP concentrations may have an impact on the results that can be obtained in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans.

              Mesenchymal stem cells from synovium have a greater proliferation and chondrogenic potential than do those from bone marrow, periosteum, fat, and muscle. This study was undertaken to compare fibrous synovium and adipose synovium (components of the synovium with subsynovium) to determine which is a more suitable source for mesenchymal stem cells, especially for cartilage regeneration, and to examine the features of adipose synovium-derived cells, fibrous synovium-derived cells, and subcutaneous fat-derived cells to determine their similarities. Human fibrous synovium, adipose synovium, and subcutaneous fat were harvested from 4 young donors and 4 elderly donors. After digestion, the nucleated cells were plated at a density considered proper to expand at a maximum rate without colony-to-colony contact. The surface epitopes, proliferative capacity, cloning efficiency, and chondrogenic, osteogenic, and adipogenic differentiation potentials of the cells were compared. Fibrous synovium- and adipose synovium-derived cells were higher in STRO-1 and CD106 and lower in CD10 compared with subcutaneous fat-derived cells. Cells derived from fibrous and adipose synovium had higher proliferative potential and colony-forming efficiency compared with subcutaneous fat-derived cells, both in mixed-population and in single-cell-derived cultures. In chondrogenic assays, pellets from fibrous synovium- and adipose synovium-derived cells produced more cartilage matrix than did cell pellets from subcutaneous fat. Osteogenic ability was also higher in fibrous synovium- and adipose synovium-derived cells, whereas adipogenic potential was nearly indistinguishable among the 3 populations. Differentiation potential of the cells was similar between young and elderly donors. Cells derived from the fibrous synovium and from the adipose synovium demonstrate comparable chondrogenic potential. Adipose synovium-derived cells are more similar to fibrous synovium-derived cells than to subcutaneous fat-derived cells.
                Bookmark

                Author and article information

                Contributors
                Journal
                Stem Cells Int
                Stem Cells Int
                SCI
                Stem Cells International
                Hindawi
                1687-966X
                1687-9678
                2019
                31 December 2019
                : 2019
                : 1358267
                Affiliations
                1Department of Orthopedics, University Clinic Krems, Mitterweg 10, 3500 Krems, Austria
                2Danube University Krems, Center for Regenerative Medicine and Orthopedics, Dr. Karl-Dorrek-Str. 30, A-3500 Krems, Austria
                3Department for Orthopedics and Traumatology, Landesklinikum Baden-Mödling, Waltersdorfer Str. 75, 2500 Baden, Austria
                4Department of Orthopedics and Traumatology, Evangelic Hospital Vienna, Hans-Sachs-Gasse 10–12 1180 Vienna, Austria
                5University of Physical Education, Alkotás u. 44, Budapest, Hungary H-1123
                Author notes

                Guest Editor: Francesco De Francesco

                Author information
                https://orcid.org/0000-0002-1827-1314
                https://orcid.org/0000-0001-8008-2226
                Article
                10.1155/2019/1358267
                7012275
                32082382
                7a94ebd6-e4f9-459d-a9a3-5264b31698c7
                Copyright © 2019 Markus Neubauer et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 August 2019
                : 1 November 2019
                : 29 November 2019
                Funding
                Funded by: Danube University Krems
                Funded by: Evangelic Hospital Vienna
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article