10
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dark diversity in the dark: a new approach to subterranean conservation

      , ,
      Subterranean Biology
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          When trying to predict biodiversity patterns, species absences in a community can be as informative as species presences. The concept of dark diversity considers geographical and ecological filters to set an expected species pool and to compare it with the observed species pool, through an index known as community completeness. Completeness shows no relationship with latitude, allowing the comparison of different communities and regions concerning community saturation. Here we propose the use of these methods to a better understanding of subterranean biodiversity patterns. We applied patterns of co-occurrence among phylogenetically related species to set the theoretical species pool and then compared it with the observed richness, using isopods as model taxon. Except for one cave, dark diversity was equal or higher than observed richness. Even though completeness was low in most cases, those caves with higher completeness represent a valuable sample of regional subterranean species pool and may act as a repository of diversity. Our study showed that the dark diversity approach is adaptable to studies of subterranean communities and may be coupled with other conservation tools towards more effective management decisions.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: not found
          • Book Chapter: not found

          Bray-Curtis Ordination: An Effective Strategy for Analysis of Multivariate Ecological Data

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dark diversity: shedding light on absent species.

            Ecological theory and nature conservation have traditionally relied solely on observed local diversity. In this review, we recommend including those species that are absent from an ecosystem but which belong to its species pool; that is, all species in the region that can potentially inhabit those particular ecological conditions. We call the set of absent species 'dark diversity'. Relating local and dark diversities enables biodiversity comparisons between regions, ecosystems and taxonomic groups, and the evaluation of the roles of local and regional processes in ecological communities. Dark diversity can also be used to counteract biodiversity loss and to estimate the restoration potential of ecosystems. We illustrate the dark diversity concept by globally mapping plant dark diversity and the local:dark diversity ratio. Copyright © 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reevaluating the arthropod tree of life.

              Arthropods are the most diverse group of animals and have been so since the Cambrian radiation. They belong to the protostome clade Ecdysozoa, with Onychophora (velvet worms) as their most likely sister group and tardigrades (water bears) the next closest relative. The arthropod tree of life can be interpreted as a five-taxon network, containing Pycnogonida, Euchelicerata, Myriapoda, Crustacea, and Hexapoda, the last two forming the clade Tetraconata or Pancrustacea. The unrooted relationship of Tetraconata to the three other lineages is well established, but of three possible rooting positions the Mandibulata hypothesis receives the most support. Novel approaches to studying anatomy with noninvasive three-dimensional reconstruction techniques, the application of these techniques to new and old fossils, and the so-called next-generation sequencing techniques are at the forefront of understanding arthropod relationships. Cambrian fossils assigned to the arthropod stem group inform on the origin of arthropod characters from a lobopodian ancestry. Monophyly of Pycnogonida, Euchelicerata, Myriapoda, Tetraconata, and Hexapoda is well supported, but the interrelationships of arachnid orders and the details of crustacean paraphyly with respect to Hexapoda remain the major unsolved phylogenetic problems. Copyright © 2012 by Annual Reviews. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Subterranean Biology
                SB
                Pensoft Publishers
                1314-2615
                1768-1448
                September 26 2019
                September 26 2019
                : 32
                : 69-80
                Article
                10.3897/subtbiol.32.38121
                7a9803e7-1031-4df1-82aa-9d626869f81f
                © 2019

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article