32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Association of Socio-Demographic Status, Lifestyle Factors and Dietary Patterns with Total Urinary Phthalates in Australian Men

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To investigate the associations between socio-demographic status, lifestyle factors, dietary patterns and urinary total phthalate concentration in a cohort of South Australian men.

          Method

          We randomly selected 1527 males aged 39 to 84 from wave two of the Men Androgen Inflammation Lifestyle Environment and Stress (MAILES) study. Total phthalate concentration was examined in fasting morning urine samples. Socio-demographic and lifestyle factors were assessed by questionnaire. Food intake was assessed by food frequency questionnaire (FFQ). Dietary patterns were constructed using factor analysis.

          Results

          Total phthalates were detected in 99.6% of the urine samples. The overall geometric mean (95% CI) of total phthalate concentration was 112.4 (107.5–117.5) ng/mL. The least square geometric means (LSGMs) of total phthalate concentration were significantly higher among people who were obese (127.8 ng/mL), consuming less than two serves fruit per day (125.7 ng/mL) and drinking more than one can (375mL) of carbonated soft drink per day (131.9 ng/mL). Two dietary patterns were identified: a prudent dietary pattern and a western dietary pattern. Both the western dietary pattern (p = 0.002) and multiple lifestyle risk factors including smoking, obesity, insufficient physical activity and the highest quartile of the western dietary pattern (p<0.001), were positively associated with total phthalate levels. There was no significant relationship between total phthalate concentration and socio-demographic status.

          Conclusion

          Phthalate exposure is ubiquitous and positively associated with lifestyle risk factors in urban dwelling Australian men.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Phthalates: toxicology and exposure.

          Phthalates are used as plasticizers in PVC plastics. As the phthalate plasticizers are not chemically bound to PVC, they can leach, migrate or evaporate into indoor air and atmosphere, foodstuff, other materials, etc. Consumer products containing phthalates can result in human exposure through direct contact and use, indirectly through leaching into other products, or general environmental contamination. Humans are exposed through ingestion, inhalation, and dermal exposure during their whole lifetime, including intrauterine development. This paper presents an overview on current risk assessments done by expert panels as well as on exposure assessment data, based on ambient and on current human biomonitoring results. Some phthalates are reproductive and developmental toxicants in animals and suspected endocrine disruptors in humans. Exposure assessment via modelling ambient data give hints that the exposure of children to phthalates exceeds that in adults. Current human biomonitoring data prove that the tolerable intake of children is exceeded to a considerable degree, in some instances up to 20-fold. Very high exposures to phthalates can occur via medical treatment, i.e. via use of medical devices containing DEHP or medicaments containing DBP phthalate in their coating. Because of their chemical properties exposure to phthalates does not result in bioaccumulation. However, health concern is raised regarding the developmental and/or reproductive toxicity of phthalates, even in environmental concentrations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000.

            We measured the urinary monoester metabolites of seven commonly used phthalates in approximately 2,540 samples collected from participants of the National Health and Nutrition Examination Survey (NHANES), 1999-2000, who were greater than or equal to 6 years of age. We found detectable levels of metabolites monoethyl phthalate (MEP), monobutyl phthalate (MBP), monobenzyl phthalate (MBzP), and mono-(2-ethylhexyl) phthalate (MEHP) in > 75% of the samples, suggesting widespread exposure in the United States to diethyl phthalate, dibutyl phthalate or diisobutylphthalate, benzylbutyl phthalate, and di-(2-ethylhexyl) phthalate, respectively. We infrequently detected monoisononyl phthalate, mono-cyclohexyl phthalate, and mono-n-octyl phthalate, suggesting that human exposures to di-isononyl phthalate, dioctylphthalate, and dicyclohexyl phthalate, respectively, are lower than those listed above, or the pathways, routes of exposure, or pharmacokinetic factors such as absorption, distribution, metabolism, and elimination are different. Non-Hispanic blacks had significantly higher concentrations of MEP than did Mexican Americans and non-Hispanic whites. Compared with adolescents and adults, children had significantly higher levels of MBP, MBzP, and MEHP but had significantly lower concentrations of MEP. Females had significantly higher concentrations of MEP and MBzP than did males, but similar MEHP levels. Of particular interest, females of all ages had significantly higher concentrations of the reproductive toxicant MBP than did males of all ages; however, women of reproductive age (i.e., 20-39 years of age) had concentrations similar to adolescent girls and women 40 years of age. These population data on exposure to phthalates will serve an important role in public health by helping to set research priorities and by establishing a nationally representative baseline of exposure with which population levels can be compared.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              What are the sources of exposure to eight frequently used phthalic acid esters in Europeans?

              Phthalic acid esters (phthalates) are used as plasticizers in numerous consumer products, commodities, and building materials. Consequently, phthalates are found in human residential and occupational environments in high concentrations, both in air and in dust. Phthalates are also ubiquitous food and environmental contaminants. An increasing number of studies sampling human urine reveal the ubiquitous phthalate exposure of consumers in industrialized countries. At the same time, recent toxicological studies have demonstrated the potential of the most important phthalates to disturb the human hormonal system and human sexual development and reproduction. Additionally, phthalates are suspected to trigger asthma and dermal diseases in children. To find the important sources of phthalates in Europeans, a scenario-based approach is applied here. Scenarios representing realistic exposure situations are generated to calculate the age-specific range in daily consumer exposure to eight phthalates. The scenarios demonstrate that exposure of infant and adult consumers is caused by different sources in many cases. Infant consumers experience significantly higher daily exposure to phthalates in relation to their body weight than older consumers. The use of consumer products and different indoor sources dominate the exposure to dimethyl, diethyl, benzylbutyl, diisononyl, and diisodecyl phthalates, whereas food has a major influence on the exposure to diisobutyl, dibutyl, and di-2-ethylhexyl phthalates. The scenario-based approach chosen in the present study provides a link between the knowledge on emission sources of phthalates and the concentrations of phthalate metabolites found in human urine.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                15 April 2015
                2015
                : 10
                : 4
                : e0122140
                Affiliations
                [1 ]Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
                [2 ]School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
                Universität Bochum, GERMANY
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: GAW SAM. Performed the experiments: RWM SAM. Analyzed the data: PYB. Contributed reagents/materials/analysis tools: RWM. Wrote the paper: PYB GAW AWT ZS. Critical revision of the manuscript for important intellectual content: ZS AWT GAW.

                Article
                PONE-D-14-33719
                10.1371/journal.pone.0122140
                4398403
                25875472
                7aa5fff9-3906-462c-b523-bcd915dcdcab
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 30 July 2014
                : 11 February 2015
                Page count
                Figures: 2, Tables: 3, Pages: 13
                Funding
                Funding was provided by National Health and Medical Research Council (NHMRC), grant number #627227, to the University of Adelaide. The funders had no role in study design, data collection and analysis,decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                The data from Men Androgen Inflammation Lifestyle Environment and Stress (MAILES) study are third party data which can be obtained through contacting Sean Martin ( sean.martin@ 123456adelaide.edu.au ) or Janet Grant ( jane.grant@ 123456adelaide.edu.au ).

                Uncategorized
                Uncategorized

                Comments

                Comment on this article