21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance

      , ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alternating antibiotic therapy, in which pairs of drugs are cycled during treatment, has been suggested as a means to inhibit the evolution of de novo resistance while avoiding the toxicity associated with more traditional combination therapy. However, it remains unclear under which conditions and by what means such alternating treatments impede the evolution of resistance. Here, we tracked multistep evolution of resistance in replicate populations of Staphylococcus aureus during 22 d of continuously increasing single-, mixed-, and alternating-drug treatment. In all three tested drug pairs, the alternating treatment reduced the overall rate of resistance by slowing the acquisition of resistance to one of the two component drugs, sometimes as effectively as mixed treatment. This slower rate of evolution is reflected in the genome-wide mutational profiles; under alternating treatments, bacteria acquire mutations in different genes than under corresponding single-drug treatments. To test whether this observed constraint on adaptive paths reflects trade-offs in which resistance to one drug is accompanied by sensitivity to a second drug, we profiled many single-step mutants for cross-resistance. Indeed, the average cross-resistance of single-step mutants can help predict whether or not evolution was slower in alternating drugs. Together, these results show that despite the complex evolutionary landscape of multidrug resistance, alternating-drug therapy can slow evolution by constraining the mutational paths toward resistance.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          <i>Staphylococcus aureus</i> Infections

          New England Journal of Medicine, 339(8), 520-532
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antibacterial resistance worldwide: causes, challenges and responses.

            The optimism of the early period of antimicrobial discovery has been tempered by the emergence of bacterial strains with resistance to these therapeutics. Today, clinically important bacteria are characterized not only by single drug resistance but also by multiple antibiotic resistance--the legacy of past decades of antimicrobial use and misuse. Drug resistance presents an ever-increasing global public health threat that involves all major microbial pathogens and antimicrobial drugs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolutionary paths to antibiotic resistance under dynamically sustained drug selection.

              Antibiotic resistance can evolve through the sequential accumulation of multiple mutations. To study such gradual evolution, we developed a selection device, the 'morbidostat', that continuously monitors bacterial growth and dynamically regulates drug concentrations, such that the evolving population is constantly challenged. We analyzed the evolution of resistance in Escherichia coli under selection with single drugs, including chloramphenicol, doxycycline and trimethoprim. Over a period of ∼20 days, resistance levels increased dramatically, with parallel populations showing similar phenotypic trajectories. Whole-genome sequencing of the evolved strains identified mutations both specific to resistance to a particular drug and shared in resistance to multiple drugs. Chloramphenicol and doxycycline resistance evolved smoothly through diverse combinations of mutations in genes involved in translation, transcription and transport. In contrast, trimethoprim resistance evolved in a stepwise manner, through mutations restricted to the gene encoding the enzyme dihydrofolate reductase (DHFR). Sequencing of DHFR over the time course of the experiment showed that parallel populations evolved similar mutations and acquired them in a similar order.
                Bookmark

                Author and article information

                Contributors
                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                October 07 2014
                October 07 2014
                October 07 2014
                September 22 2014
                : 111
                : 40
                : 14494-14499
                Article
                10.1073/pnas.1409800111
                25246554
                7ab6e4ae-14de-46c6-a34e-d60a04cc954f
                © 2014
                History

                Comments

                Comment on this article