20
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Purification of living environments using photocatalysts: Inactivation of microorganisms and decomposition of allergens

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many emerging and re-emerging infectious diseases are prevalent, and the number of patients with allergies is increasing. Therefore, the importance of purifying the living environment is increasing. Photocatalysts undergo extreme redox reactions and decompose organic matter upon exposure to the excitation light. In contrast to ultraviolet light and disinfectants, which are standard methods for inactivating viruses and eliminating microorganisms, photocatalysts can decompose toxic substances, such as endotoxins and allergens, rendering them harmless to the human body. Photocatalysts have attracted significant attention as potential antiviral and antimicrobial agents. This review outlines the antiviral, antimicrobial, and anti-allergenic effects of photocatalysts. Especially, we have discussed the inactivation of SARS-CoV-2 in liquids and aerosols, elimination of Legionella pneumophila in liquids, decomposition of its endotoxin, decomposition of cat and dog allergens, and elimination of their allergenicity using photocatalysts. Furthermore, we discuss future perspectives on how photocatalysts can purify living environments, and how photocatalytic technology can be applied to companion animals and the livestock industry.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A new coronavirus associated with human respiratory disease in China

          Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health 1–3 . Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing 4 of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here ‘WH-Human 1’ coronavirus (and has also been referred to as ‘2019-nCoV’). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China 5 . This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans.
            • Record: found
            • Abstract: not found
            • Article: not found

            Electrochemical Photolysis of Water at a Semiconductor Electrode

              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update

              Coronaviruses (CoVs) belong to the family of Coronaviridae, the order Nidovirales, and the genus Coronavirus. They are the largest group of viruses causing respiratory and gastrointestinal infections. Morphologically, CoVs are enveloped viruses containing a non-segmented positive-sense, single-stranded ribonucleic acid (RNA) viruses. CoVs are categorized into four important genera that include Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus. A novel member of human CoV that has recently emerged in Wuhan, China, is now formally named as SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). This is a unique strain of RNA viruses that have not been previously observed in humans. The virus has wide host adaptability and is capable of causing severe diseases in humans, masked palm civets, mice, dogs, cats, camels, pigs, chickens, and bats. The SARS-CoV-2 typically causes respiratory and gastrointestinal sickness in both humans and animals. It can be transmitted through aerosols and direct/indirect contact, as well as during medical cases and laboratory sample handling. Specific structural proteins, which might be found on the surface of the virus, play an important role in the pathogenesis and development of the complications. The disease is characterized by distinct medical signs and symptoms that include high fever, chills, cough, and shortness of breath or difficulty in breathing. The infected people may also present with other symptoms such as diarrhea, myalgia, fatigue, expectoration, and hemoptysis. It is important from the public health and economic point of view as it affects the growth of the country, which is majorly attributed to the restriction in the movement of the people and the cost associated with the control and prevention of the disease. Since there is no specific therapeutic intervention nor a vaccine available against the virus, supportive management and treatment with non-specific therapeutic agents (repurposed drugs) may provide relief to the patients. Some preventive strategies of the disease include blocking the routes of transmission of the infections, disinfection of instruments used during medical case handling, using personal protective equipment, proper and early diagnosis of the disease, avoiding contact with the sick patients, and quarantine of the infected/exposed people.

                Author and article information

                Journal
                J Vet Med Sci
                J Vet Med Sci
                JVMS
                The Journal of Veterinary Medical Science
                The Japanese Society of Veterinary Science
                0916-7250
                1347-7439
                02 May 2024
                June 2024
                : 86
                : 6
                : 689-699
                Affiliations
                [1) ]Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
                Author notes
                [* ]Correspondence to: Matsuura R: matsuura-ryosuke@ 123456g.ecc.u-tokyo.ac.jp , Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
                Article
                24-0055
                10.1292/jvms.24-0055
                11187590
                38692886
                7abef253-3c1e-4a26-b204-4af34f48319b
                ©2024 The Japanese Society of Veterinary Science

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/ )

                History
                : 05 February 2024
                : 21 April 2024
                Categories
                Public Health
                Review

                allergen,legionella pneumophila,photocatalyst,severe acute respiratory syndrome coronavirus 2 (sars-cov-2)

                Comments

                Comment on this article

                Related Documents Log