21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DI-5-Cuffs: Lumbar Intervertebral Disc Proteoglycan and Water Content Changes in Humans after Five Days of Dry Immersion to Simulate Microgravity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most astronauts experience back pain after spaceflight, primarily located in the lumbar region. Intervertebral disc herniations have been observed after real and simulated microgravity. Spinal deconditioning after exposure to microgravity has been described, but the underlying mechanisms are not well understood. The dry immersion (DI) model of microgravity was used with eighteen male volunteers. Half of the participants wore thigh cuffs as a potential countermeasure. The spinal changes and intervertebral disc (IVD) content changes were investigated using magnetic resonance imaging (MRI) analyses with T1-T2 mapping sequences. IVD water content was estimated by the apparent diffusion coefficient (ADC), with proteoglycan content measured using MRI T1-mapping sequences centered in the nucleus pulposus. The use of thigh cuffs had no effect on any of the spinal variables measured. There was significant spinal lengthening for all of the subjects. The ADC and IVD proteoglycan content both increased significantly with DI (7.34 ± 2.23% and 10.09 ± 1.39%, respectively; mean ± standard deviation), p < 0.05). The ADC changes suggest dynamic and rapid water diffusion inside IVDs, linked to gravitational unloading. Further investigation is needed to determine whether similar changes occur in the cervical IVDs. A better understanding of the mechanisms involved in spinal deconditioning with spaceflight would assist in the development of alternative countermeasures to prevent IVD herniation.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          New in vivo measurements of pressures in the intervertebral disc in daily life.

          We conducted intradiscal pressure measurements with one volunteer performing various activities normally found in daily life, sports, and spinal therapy. The goal of this study was to measure intradiscal pressure to complement earlier data from Nachemson with dynamic and long-term measurements over a broad range of activities. Loading of the spine still is not well understood. The most important in vivo data are from pioneering intradiscal pressure measurements recorded by Nachemson during the 1960s. Since that time, there have been few data to corroborate or dispute those findings. Under sterile surgical conditions, a pressure transducer with a diameter of 1.5 mm was implanted in the nucleus pulposus of a nondegenerated L4-L5 disc of a male volunteer 45-years-old and weighing 70 kg. Pressure was recorded with a telemetry system during a period of approximately 24 hours for various lying positions; sitting positions in a chair, in an armchair, and on a pezziball (ergonomic sitting ball); during sneezing, laughing, walking, jogging, stair climbing, load lifting during hydration over 7 hours of sleeping, and others. The following values and more were measured: lying prone, 0.1 MPa; lying laterally, 0.12 MPa; relaxed standing, 0.5 MPa; standing flexed forward, 1.1 MPa; sitting unsupported, 0.46 MPa; sitting with maximum flexion, 0.83 MPa; nonchalant sitting, 0.3 MPa; and lifting a 20-kg weight with round flexed back, 2.3 MPa; with flexed knees, 1.7 MPa; and close to the body, 1.1 MPa. During the night, pressure increased from 0.1 to 0.24 MPa. Good correlation was found with Nachemson's data during many exercises, with the exception of the comparison of standing and sitting or of the various lying positions. Notwithstanding the limitations related to the single-subject design of this study, these differences may be explained by the different transducers used. It can be cautiously concluded that the intradiscal pressure during sitting may in fact be less than that in erect standing, that muscle activity increases pressure, that constantly changing position is important to promote flow of fluid (nutrition) to the disc, and that many of the physiotherapy methods studied are valid, but a number of them should be re-evaluated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long-term dry immersion: review and prospects.

            Dry immersion, which is a ground-based model of prolonged conditions of microgravity, is widely used in Russia but is less well known elsewhere. Dry immersion involves immersing the subject in thermoneutral water covered with an elastic waterproof fabric. As a result, the immersed subject, who is freely suspended in the water mass, remains dry. For a relatively short duration, the model can faithfully reproduce most physiological effects of actual microgravity, including centralization of body fluids, support unloading, and hypokinesia. Unlike bed rest, dry immersion provides a unique opportunity to study the physiological effects of the lack of a supporting structure for the body (a phenomenon we call 'supportlessness'). In this review, we attempt to provide a detailed description of dry immersion. The main sections of the paper discuss the changes induced by long-term dry immersion in the neuromuscular and sensorimotor systems, fluid-electrolyte regulation, the cardiovascular system, metabolism, blood and immunity, respiration, and thermoregulation. The long-term effects of dry immersion are compared with those of bed rest and actual space flight. The actual and potential uses of dry immersion are discussed in the context of fundamental studies and applications for medical support during space flight and terrestrial health care.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Space, gravity and the physiology of aging: parallel or convergent disciplines? A mini-review.

              The abnormal physiology that manifests itself in healthy humans during their adaptation to the microgravity of space has all the features of accelerated aging. The mechano-skeletal and vestibulo-neuromuscular stimuli which are below threshold in space, result in an overall greater than 10-fold more rapid onset and time course of muscle and bone atrophy in space and the development of balance and coordination problems on return to Earth than occur with aging. Similarly, the loss of functional capacity of the cardiovascular system that results in space and continuous bed rest is over 10 times faster than in the course of aging. Deconditioning in space from gravity deprivation has brought attention to the medical hazards of deconditioning on Earth from gravity withdrawal as in sedentary aging. Though seemingly reversible after periods of 6 months in space or its ground analog of bed rest, it remains to be seen whether that will be so after longer exposures. Both adaptation to space and aging do not merely parallel but converge as disorders of mechanotransduction. Like spaceflight, its analog bed rest telescopes the changes observed with aging and serves as a useful clinical model for the study of age-related deconditioning. The convergence of the disciplines of aging, along with gravitational and space physiology is advancing the understanding and prevention of modern lifestyle medical disorders. 2009 S. Karger AG, Basel.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                26 May 2020
                June 2020
                : 21
                : 11
                : 3748
                Affiliations
                [1 ]Institut NeuroMyogène, Faculté de Médecine Lyon Est, 69008 Lyon, France; claude.gharib@ 123456univ-lyon1.fr
                [2 ]Centre de Recherche Clinique, Centre Hospitalier Universitaire d’Angers, 49100 Angers, France; Nastassia.Navasiolava@ 123456chu-angers.fr (N.N.); macustaud@ 123456chu-angers.fr (C.M.-A.)
                [3 ]Siemens Healthinners, Service Application, 93210 Saint-Denis, France; karen.mkhitaryan@ 123456siemens-healthineers.com
                [4 ]Olea Medical, Service Application, 13600 La Ciotat, France; emmanuelle.jouan@ 123456olea-medical.com
                [5 ]Department of Kinesiology, University of Waterloo, Waterloo, ON N2L3G1, Canada; kathryn.zuj@ 123456gmail.com
                [6 ]CNES, Centre National d’Etudes Spatiales, 75001 Paris, France; guillemette.gauquelinkoch@ 123456cnes.fr
                [7 ]MitoVasc UMR INSERM 1083-CNRS 6015, Université d’Angers, 49100 Angers, France
                Author notes
                Author information
                https://orcid.org/0000-0001-7962-1026
                Article
                ijms-21-03748
                10.3390/ijms21113748
                7312650
                32466473
                7ad2002f-135e-4108-887b-5eaeb7810d81
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 March 2020
                : 22 May 2020
                Categories
                Article

                Molecular biology
                spine,intradiscal proteins,adc diffusion,t1-t2 mapping,vertebral deconditioning,space physiology,back pain

                Comments

                Comment on this article