78
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Stem cell-based biological tooth repair and regeneration

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Teeth exhibit limited repair in response to damage, and dental pulp stem cells probably provide a source of cells to replace those damaged and to facilitate repair. Stem cells in other parts of the tooth, such as the periodontal ligament and growing roots, play more dynamic roles in tooth function and development. Dental stem cells can be obtained with ease, making them an attractive source of autologous stem cells for use in restoring vital pulp tissue removed because of infection, in regeneration of periodontal ligament lost in periodontal disease, and for generation of complete or partial tooth structures to form biological implants. As dental stem cells share properties with mesenchymal stem cells, there is also considerable interest in their wider potential to treat disorders involving mesenchymal (or indeed non-mesenchymal) cell derivatives, such as in Parkinson's disease.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine.

          To date, 5 different human dental stem/progenitor cells have been isolated and characterized: dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), stem cells from apical papilla (SCAP), and dental follicle progenitor cells (DFPCs). These postnatal populations have mesenchymal-stem-cell-like (MSC) qualities, including the capacity for self-renewal and multilineage differentiation potential. MSCs derived from bone marrow (BMMSCs) are capable of giving rise to various lineages of cells, such as osteogenic, chondrogenic, adipogenic, myogenic, and neurogenic cells. The dental-tissue-derived stem cells are isolated from specialized tissue with potent capacities to differentiate into odontogenic cells. However, they also have the ability to give rise to other cell lineages similar to, but different in potency from, that of BMMSCs. This article will review the isolation and characterization of the properties of different dental MSC-like populations in comparison with those of other MSCs, such as BMMSCs. Important issues in stem cell biology, such as stem cell niche, homing, and immunoregulation, will also be discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stem cell properties of human dental pulp stem cells.

            In this study, we characterized the self-renewal capability, multi-lineage differentiation capacity, and clonogenic efficiency of human dental pulp stem cells (DPSCs). DPSCs were capable of forming ectopic dentin and associated pulp tissue in vivo. Stromal-like cells were reestablished in culture from primary DPSC transplants and re-transplanted into immunocompromised mice to generate a dentin-pulp-like tissue, demonstrating their self-renewal capability. DPSCs were also found to be capable of differentiating into adipocytes and neural-like cells. The odontogenic potential of 12 individual single-colony-derived DPSC strains was determined. Two-thirds of the single-colony-derived DPSC strains generated abundant ectopic dentin in vivo, while only a limited amount of dentin was detected in the remaining one-third. These results indicate that single-colony-derived DPSC strains differ from each other with respect to their rate of odontogenesis. Taken together, these results demonstrate that DPSCs possess stem-cell-like qualities, including self-renewal capability and multi-lineage differentiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering.

              Some clinical case reports have shown that immature permanent teeth with periradicular periodontitis or abscess can undergo apexogenesis after conservative endodontic treatment. A call for a paradigm shift and new protocol for the clinical management of these cases has been brought to attention. Concomitantly, a new population of mesenchymal stem cells residing in the apical papilla of permanent immature teeth recently has been discovered and was termed stem cells from the apical papilla (SCAP). These stem cells appear to be the source of odontoblasts that are responsible for the formation of root dentin. Conservation of these stem cells when treating immature teeth may allow continuous formation of the root to completion. This article reviews current findings on the isolation and characterization of these stem cells. The potential role of these stem cells in the following respects will be discussed: (1) their contribution in continued root maturation in endodontically treated immature teeth with periradicular periodontitis or abscess and (2) their potential utilization for pulp/dentin regeneration and bioroot engineering.
                Bookmark

                Author and article information

                Contributors
                Journal
                Trends Cell Biol
                Trends Cell Biol
                Trends in Cell Biology
                Elsevier Science Publishers
                0962-8924
                1879-3088
                December 2010
                December 2010
                : 20-206
                : 12-6
                : 715-722
                Affiliations
                [1 ]Department of Craniofacial Development and MRC Centre for Transplantation, Kings College London; NIHR comprehensive Biomedical Research Centre at Guys and St Thomas’ NHS Foundation Trust and Kings College London, London, UK
                [2 ]Advanced Centre for Biochemical Engineering, University College London, London, UK
                Article
                TICB751
                10.1016/j.tcb.2010.09.012
                3000521
                21035344
                7ae5c58f-58ef-4c2f-9ecb-a3d6c7d97822
                © 2010 Elsevier Ltd.

                This document may be redistributed and reused, subject to certain conditions.

                History
                Categories
                Review
                Special issue – CellBio-X

                Cell biology
                Cell biology

                Comments

                Comment on this article