Blog
About

2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Temperature sensing by plants: calcium-permeable channels as primary sensors--a model.

      The Journal of Membrane Biology

      Temperature, physiology, Signal Transduction, Reproducibility of Results, Plant Physiological Phenomena, Models, Biological, Mathematics, Kinetics, metabolism, Calcium-Transporting ATPases, Calcium Channels, Calcium

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently the properties of temperature sensing in plants have been demonstrated experimentally by Plieth et al. (The Plant Journal 1999. 18:491-497). The relevant biophysical parameters are established here by mathematical modeling in order to understand the experimental findings in quantitative terms. A simple one-compartment model is presented, as a preliminary approach to explain how the input signal (i.e., temperature T) is perceived and how the information is translated into an output signal in the plant cell (i.e., [Ca(2+)](c)). The model is based on the fact that calcium influx into the cytoplasm is mediated by calcium-permeable channels which are assumed to be solely dependent on cooling rate (dT/dt) and calcium efflux is mediated by calcium pumps which have been shown to be dependent on absolute temperature (T). Firstly, it is demonstrated that this model is able to meet the demand for a satisfactory interpretation of the experimental data, and secondly that it reproduces the experimentally observed features of the cooling induced [Ca(2+)](c) changes well. This suggests that the primary temperature sensor in plants might be a Ca(2+)-permeable channel.

          Related collections

          Author and article information

          Journal
          10556360

          Comments

          Comment on this article