17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mechanisms and control of vitellogenesis in crustaceans

      Fisheries Science
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: not found
          • Article: not found

          Accumulation of yolk proteins in insect oocytes.

            • Record: found
            • Abstract: found
            • Article: not found

            GnRHs and GnRH receptors.

            GnRH is the pivotal hypothalamic hormone regulating reproduction. Over 20 forms of the decapeptide have been identified in which the NH2- and COOH-terminal sequences, which are essential for receptor binding and activation, are conserved. In mammals, there are two forms, GnRH I which regulates gonadotropin and GnRH II which appears to be a neuromodulator and stimulates sexual behaviour. GnRHs also occur in reproductive tissues and tumours in which a paracrine/autocrine role is postulated. GnRH agonists and antagonists are now extensively used to treat hormone-dependent diseases, in assisted conception and have promise as novel contraceptives. Non-peptide orally-active GnRH antagonists have been recently developed and may increase the flexibility and range of utility. As with GnRH, GnRH receptors have undergone co-ordinated gene duplications such that cognate receptor subtypes for respective ligands exist in most vertebrates. Interestingly, in man and some other mammals (e.g. chimp, sheep and bovine) the Type II GnRH receptor has been silenced. However, GnRH I and GnRH II still appear to have distinct roles in signalling differentially through the Type I receptor (ligand-selective-signalling) to have different downstream effects. The ligand-receptor interactions and receptor conformational changes involved in receptor activation have been partly delineated. Together, these findings are setting the scene for generating novel selective GnRH analogues with potential for wider and more specific application.
              • Record: found
              • Abstract: found
              • Article: not found

              Control of estrogen receptor ligand binding by Hsp90.

              The molecular chaperone Hsp90 interacts with unliganded steroid hormone receptors and regulates their activity. We have analyzed the function of yeast and mammalian Hsp90 in regulating the ability of the human estrogen receptor (ER) to bind ligands in vivo and in vitro. Using the yeast system, we show that the ER expressed in several different hsp82 mutant strains binds reduced amounts of the synthetic estrogen diethylstilbestrol compared to the wild type. This defect in hormone binding occurs without any significant change in the steady state levels of ER protein. To analyze the role of mammalian Hsp90, we synthesized the human ER in rabbit reticulocyte lysates containing geldanamycin, an Hsp90 inhibitor. At low concentrations of geldanamycin we observed reduced levels of hormone binding by the ER. At higher concentrations, we found reduced synthesis of the receptor. These data indicate that Hsp90 functions to maintain the ER in a high affinity hormone-binding conformation.

                Author and article information

                Journal
                Fisheries Science
                Fish Sci
                Springer Nature
                0919-9268
                1444-2906
                January 2011
                November 16 2010
                : 77
                : 1
                : 1-21
                Article
                10.1007/s12562-010-0301-z
                7b15b95b-5aa9-4a38-bddd-ad2a6ea2f945
                © 2010
                History

                Comments

                Comment on this article

                Related Documents Log