18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ecological status assessment of Skalenski Lakes (Bulgaria)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Over the past decade new ecological indices based on phytoplankton and macrophytes were developed as part of the tools for assessment of the ecological status of water bodies. This study demonstrates the applicability of two of them (Assemblage index / Q/ and Algae Group Index /AGI/) for evaluation of water bodies from a lake type L4 as well as their comparability. Assessment of the ecological status of two lake ecosystems was performed in order to ensure successful protection, enhancement and management of lowland and semi-mountain lakes in Bulgaria. Data on the aquatic flora from Golyamo Skalensko Lake and Malko Skalensko Lake over a period of two years were used to assess their ecological status. In addition, the toxic potential of the established dominant cyanoprokaryotic species was also evaluated. Phytoplankton- and macrophyte-based metrics resulted in complementary evaluation of temporary and long-term environmental conditions. Despite the hydraulic connection and proximity between the two lakes, Golyamo Skalensko Lake and Malko Skalensko Lake appear as completely different ecosystems, according to the phytoplankton structure (species composition, number of species, abundance, seasonal succession), macrophytes and ecological status.

          Related collections

          Most cited references134

          • Record: found
          • Abstract: found
          • Article: not found

          Toxins of cyanobacteria.

          Blue-green algae are found in lakes, ponds, rivers and brackish waters throughout the world. In case of excessive growth such as bloom formation, these bacteria can produce inherent toxins in quantities causing toxicity in mammals, including humans. These cyanotoxins include cyclic peptides and alkaloids. Among the cyclic peptides are the microcystins and the nodularins. The alkaloids include anatoxin-a, anatoxin-a(S), cylindrospermopsin, saxitoxins (STXs), aplysiatoxins and lyngbyatoxin. Both biological and chemical methods are used to determine cyanotoxins. Bioassays and biochemical assays are nonspecific, so they can only be used as screening methods. HPLC has some good prospects. For the subsequent detection of these toxins different detectors may be used, ranging from simple UV-spectrometry via fluorescence detection to various types of MS. The main problem in the determination of cyanobacterial toxins is the lack of reference materials of all relevant toxins. In general, toxicity data on cyanotoxins are rather scarce. A majority of toxicity data are known to be of microcystin-LR. For nodularins, data from a few animal studies are available. For the alkaloids, limited toxicity data exist for anatoxin-a, cylindrospermopsin and STX. Risk assessment for acute exposure could be relevant for some types of exposure. Nevertheless, no acute reference doses have formally been derived thus far. For STX(s), many countries have established tolerance levels in bivalves, but these limits were set in view of STX(s) as biotoxins, accumulating in marine shellfish. Official regulations for other cyanotoxins have not been established, although some (provisional) guideline values have been derived for microcystins in drinking water by WHO and several countries.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Textbook of limnology

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir.

              The control of phytoplankton growth is mainly related to the availability of light and nutrients. Both may select phytoplankton species, but only if they occur in limiting amounts. During the last decade, the functional groups approach, based on the physiological, morphological and ecological attributes of the species, has proved to be a more efficient way to analyze seasonal changes in phytoplankton biomass. We analysed the dynamics of the phytoplankton functional groups sensu Reynolds, recognising the driving forces (light, mixing regime, and nutrients) in the Sau Reservoir, based on a one-year cycle (monthly surface-water sampling). The Sau Reservoir is a Mediterranean water-supply reservoir with a canyon-shaped basin and a clear and mixed epilimnion layer. The long stratification period and high light availability led to high phytoplankton biomass (110.8 fresh-weight mg L(-1)) in the epilimnion during summer. The reservoir showed P-limitation for phytoplankton growth in this period. All functional groups included one or more species (X2-Rhodomonas spp.; Y-Cryptomonas spp.; F-Oocystis lacustris; K-Aphanocapsa spp.) selected by resources, especially phosphorus. Species of Cryptomonas (group Y) dominated during the mixing period (winter season) in conditions of low light and relatively high availability of dissolved nutrients. Increases in water-column stability during spring stratification led to phytoplankton biomass increases due to the dominance of small flagellate functional groups (X2 and X3, chrysophyceans). The colonial chlorophycean O. lacustris (group F) peaked during the mid-summer stratification, when the mixed epilimnion was clearly depleted in nutrients, especially SRP. High temperature and increases in nutrient concentration during the end-summer and mid-autumn resulted in a decrease of green algae (group F) and increase of Aphanocapsa spp. (cyanobacteria, group K) and dinoflagellates (group L(o)). The study also revealed the important role of physical processes in the seasonal gradient, in selecting phytoplankton functional groups, and consequently in the assessment of ecological status. The Q index (assemblage index) based on functional groups indicated the overall good ecological status of the Sau Reservoir, which varied as a function of the mixing regime. This is the first application of the Assemblage Index to a European water-supply reservoir.
                Bookmark

                Author and article information

                Journal
                Biotechnol Biotechnol Equip
                Biotechnol. Biotechnol. Equip
                TBEQ
                tbeq20
                Biotechnology, Biotechnological Equipment
                Taylor & Francis
                1310-2818
                1314-3530
                2 January 2014
                04 June 2014
                : 28
                : 1
                : 82-95
                Affiliations
                [ a ]Department of Botany, Faculty of Biology, Plovdiv University “P. Hilendarski” , Plovdiv, Bulgaria
                Author notes
                [* ]Corresponding author. Email: teneva@ 123456uni-plovdiv.bg
                Article
                901682
                10.1080/13102818.2014.901682
                4433782
                26019492
                7b23e52c-7a14-4f8a-90e8-8e7a06a054cb
                © 2014 The Author(s). Published by Taylor & Francis.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

                History
                Page count
                Figures: 6, Tables: 5, References: 44, Pages: 14
                Funding
                This work was supported by Black Sea River Basin District, Varna [grant numbers 175/19.07.2011 and 6-FS-01-06/06.07.2012].
                Categories
                Articles; Biodiversity & Ecosystems

                phytoplankton,functional groups,cyanotoxins,macrophytes,ecological assessment,lakes,wfd

                Comments

                Comment on this article