189
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quadruplex DNA: sequence, topology and structure

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          G-quadruplexes are higher-order DNA and RNA structures formed from G-rich sequences that are built around tetrads of hydrogen-bonded guanine bases. Potential quadruplex sequences have been identified in G-rich eukaryotic telomeres, and more recently in non-telomeric genomic DNA, e.g. in nuclease-hypersensitive promoter regions. The natural role and biological validation of these structures is starting to be explored, and there is particular interest in them as targets for therapeutic intervention. This survey focuses on the folding and structural features on quadruplexes formed from telomeric and non-telomeric DNA sequences, and examines fundamental aspects of topology and the emerging relationships with sequence. Emphasis is placed on information from the high-resolution methods of X-ray crystallography and NMR, and their scope and current limitations are discussed. Such information, together with biological insights, will be important for the discovery of drugs targeting quadruplexes from particular genes.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution

          Human telomeric DNA consists of tandem repeats of the sequence d(TTAGGG). The formation and stabilization of DNA G-quadruplexes in the human telomeric sequence have been shown to inhibit the activity of telomerase, thus the telomeric DNA G-quadruplex has been considered as an attractive target for cancer therapeutic intervention. However, knowledge of the intact human telomeric G-quadruplex structure(s) formed under physiological conditions is a prerequisite for structure-based rational drug design. Here we report the folding structure of the human telomeric sequence in K+ solution determined by NMR. Our results demonstrate a novel, unprecedented intramolecular G-quadruplex folding topology with hybrid-type mixed parallel/antiparallel G-strands. This telomeric G-quadruplex structure contains three G-tetrads with mixed G-arrangements, which are connected consecutively with a double-chain-reversal side loop and two lateral loops, each consisting of three nucleotides TTA. This intramolecular hybrid-type telomeric G-quadruplex structure formed in K+ solution is distinct from those reported on the 22 nt Tel22 in Na+ solution and in crystalline state in the presence of K+, and appears to be the predominant conformation for the extended 26 nt telomeric sequence Tel26 in the presence of K+, regardless of the presence or absence of Na+. Furthermore, the addition of K+ readily converts the Na+-form conformation to the K+-form hybrid-type G-quadruplex. Our results explain all the reported experimental data on the human telomeric G-quadruplexes formed in the presence of K+, and provide important insights for understanding the polymorphism and interconversion of various G-quadruplex structures formed within the human telomeric sequence, as well as the effects of sequence and cations. This hybrid-type G-quadruplex topology suggests a straightforward pathway for the secondary structure formation with effective packing within the extended human telomeric DNA. The hybrid-type telomeric G-quadruplex is most likely to be of pharmacological relevance, and the distinct folding topology of this G-quadruplex suggests that it can be specifically targeted by G-quadruplex interactive small molecule drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex.

            Repeats of Gn sequences are detected as single strand overhangs at the ends of eukaryotic chromosomes together with associated binding proteins. Such telomere sequences have been implicated in the replication and maintenance of chromosomal termini. They may also mediate chromosomal organization and association during meiosis and mitosis. We have determined the three-dimensional solution structure of the human telomere sequence, d[AG3(T2AG3)3] in Na(+)-containing solution using a combined NMR, distance geometry and molecular dynamics approach (including relaxation matrix refinement). The sequence, which contains four AG3 repeats, folds intramolecularly into a G-tetraplex stabilized by three stacked G-tetrads which are connected by two lateral loops and a central diagonal loop. Of the four grooves that are formed, one is wide, two are of medium width and one is narrow. The alignment of adjacent G-G-G segments in parallel generates the two grooves of medium width whilst the antiparallel arrangement results in one wide and one narrow groove. Three of the four adenines stack on top of adjacent G-tetrads while the majority of the thymines sample multiple conformations. The availability of the d[AG3(T2AG3)3] solution structure containing four AG3 human telomeric repeats should permit the rational design of ligands that recognize and bind with specificity and affinity to the individual grooves of the G-tetraplex, as well as to either end containing the diagonal and lateral loops. Such ligands could modulate the equilibrium between folded G-tetraplex structures and their unfolded extended counterparts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Gene function correlates with potential for G4 DNA formation in the human genome

              G-rich genomic regions can form G4 DNA upon transcription or replication. We have quantified the potential for G4 DNA formation (G4P) of the 16 654 genes in the human RefSeq database, and then correlated gene function with G4P. We have found that very low and very high G4P correlates with specific functional classes of genes. Notably, tumor suppressor genes have very low G4P and proto-oncogenes have very high G4P. G4P of these genes is evenly distributed between exons and introns, and it does not reflect enrichment for CpG islands or local chromosomal environment. These results show that genomic structure undergoes selection based on gene function. Selection based on G4P could promote genomic stability (or instability) of specific classes of genes; or reflect mechanisms for global regulation of gene expression.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                November 2006
                November 2006
                29 September 2006
                : 34
                : 19
                : 5402-5415
                Affiliations
                Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London 29-39 Brunswick Square, London WC1N 1AX, UK
                Author notes
                *To whom correspondence should be addressed. Tel: +44 207 753 5969; Fax: +44 207 753 5970; Email: stephen.neidle@ 123456pharmacy.ac.uk
                Article
                10.1093/nar/gkl655
                1636468
                17012276
                7b2c5404-a94d-4724-a510-8e256fb6cff7
                © 2006 The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 July 2006
                : 25 August 2006
                : 27 August 2006
                Categories
                Survey and Summary

                Genetics
                Genetics

                Comments

                Comment on this article