67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structural and Biochemical Basis for Development of Influenza Virus Inhibitors Targeting the PA Endonuclease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Emerging influenza viruses are a serious threat to human health because of their pandemic potential. A promising target for the development of novel anti-influenza therapeutics is the PA protein, whose endonuclease activity is essential for viral replication. Translation of viral mRNAs by the host ribosome requires mRNA capping for recognition and binding, and the necessary mRNA caps are cleaved or “snatched” from host pre-mRNAs by the PA endonuclease. The structure-based development of inhibitors that target PA endonuclease is now possible with the recent crystal structure of the PA catalytic domain. In this study, we sought to understand the molecular mechanism of inhibition by several compounds that are known or predicted to block endonuclease-dependent polymerase activity. Using an in vitro endonuclease activity assay, we show that these compounds block the enzymatic activity of the isolated PA endonuclease domain. Using X-ray crystallography, we show how these inhibitors coordinate the two-metal endonuclease active site and engage the active site residues. Two structures also reveal an induced-fit mode of inhibitor binding. The structures allow a molecular understanding of the structure-activity relationship of several known influenza inhibitors and the mechanism of drug resistance by a PA mutation. Taken together, our data reveal new strategies for structure-based design and optimization of PA endonuclease inhibitors.

          Author Summary

          Seasonal and pandemic influenza have enormous impacts on global public health. The rapid emergence of influenza virus strains that are resistant to current antiviral therapies highlights the urgent need to develop new therapeutic options. A promising target for drug discovery is the influenza virus PA protein, whose endonuclease enzymatic activity is essential for the “cap-snatching” step of viral mRNA transcription that allows transcripts to be processed by the host ribosome. Here, we describe a structure-based analysis of the mechanism of inhibition of the influenza virus PA endonuclease by small molecules. Our X-ray crystallographic studies have resolved the modes of binding of known and predicted inhibitors, and revealed that they directly block the PA endonuclease active site. We also report a number of molecular interactions that contribute to binding affinity and specificity. Our structural results are supported by biochemical analyses of the inhibition of enzymatic activity and computational docking experiments. Overall, our data reveal exciting strategies for the design and optimization of novel influenza virus inhibitors that target the PA protein.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit.

          The influenza virus polymerase, a heterotrimer composed of three subunits, PA, PB1 and PB2, is responsible for replication and transcription of the eight separate segments of the viral RNA genome in the nuclei of infected cells. The polymerase synthesizes viral messenger RNAs using short capped primers derived from cellular transcripts by a unique 'cap-snatching' mechanism. The PB2 subunit binds the 5' cap of host pre-mRNAs, which are subsequently cleaved after 10-13 nucleotides by the viral endonuclease, hitherto thought to reside in the PB2 (ref. 5) or PB1 (ref. 2) subunits. Here we describe biochemical and structural studies showing that the amino-terminal 209 residues of the PA subunit contain the endonuclease active site. We show that this domain has intrinsic RNA and DNA endonuclease activity that is strongly activated by manganese ions, matching observations reported for the endonuclease activity of the intact trimeric polymerase. Furthermore, this activity is inhibited by 2,4-dioxo-4-phenylbutanoic acid, a known inhibitor of the influenza endonuclease. The crystal structure of the domain reveals a structural core closely resembling resolvases and type II restriction endonucleases. The active site comprises a histidine and a cluster of three acidic residues, conserved in all influenza viruses, which bind two manganese ions in a configuration similar to other two-metal-dependent endonucleases. Two active site residues have previously been shown to specifically eliminate the polymerase endonuclease activity when mutated. These results will facilitate the optimisation of endonuclease inhibitors as potential new anti-influenza drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antiviral effect of catechins in green tea on influenza virus.

            Polyphenolic compound catechins ((-)-epigallocatechin gallate (EGCG), (-)-epicatechin gallate (ECG) and (-)-epigallocatechin (EGC)) from green tea were evaluated for their ability to inhibit influenza virus replication in cell culture and for potentially direct virucidal effect. Among the test compounds, the EGCG and ECG were found to be potent inhibitors of influenza virus replication in MDCK cell culture and this effect was observed in all influenza virus subtypes tested, including A/H1N1, A/H3N2 and B virus. The 50% effective inhibition concentration (EC50) of EGCG, ECG, and EGC for influenza A virus were 22-28, 22-40 and 309-318 microM, respectively. EGCG and ECG exhibited hemagglutination inhibition activity, EGCG being more effective. However, the sensitivity in hemagglutination inhibition was widely different among three different subtypes of influenza viruses tested. Quantitative RT-PCR analysis revealed that, at high concentration, EGCG and ECG also suppressed viral RNA synthesis in MDCK cells whereas EGC failed to show similar effect. Similarly, EGCG and ECG inhibited the neuraminidase activity more effectively than the EGC. The results show that the 3-galloyl group of catechin skeleton plays an important role on the observed antiviral activity, whereas the 5'-OH at the trihydroxy benzyl moiety at 2-position plays a minor role. The results, along with the HA type-specific effect, suggest that the antiviral effect of catechins on influenza virus is mediated not only by specific interaction with HA, but altering the physical properties of viral membrane.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity.

              DNA and a large proportion of RNA are antiparallel duplexes composed of an unvarying phosphosugar backbone surrounding uniformly stacked and highly similar base pairs. How do the myriad of enzymes (including ribozymes) that perform catalysis on nucleic acids achieve exquisite structure or sequence specificity? In all DNA and RNA polymerases and many nucleases and transposases, two Mg2+ ions are jointly coordinated by the nucleic acid substrate and catalytic residues of the enzyme. Based on the exquisite sensitivity of Mg2+ ions to the ligand geometry and electrostatic environment, we propose that two-metal-ion catalysis greatly enhances substrate recognition and catalytic specificity.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                August 2012
                August 2012
                2 August 2012
                : 8
                : 8
                : e1002830
                Affiliations
                [1 ]Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
                [2 ]Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
                [3 ]Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
                [4 ]Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
                Johns Hopkins University - Bloomberg School of Public Health, United States of America
                Author notes

                Conceived and designed the experiments: RMD PJS SWW. Performed the experiments: RMD PJS BMB MY. Analyzed the data: RMD PJS JB RJW TRW SWW. Contributed reagents/materials/analysis tools: JB. Wrote the paper: RMD SWW.

                Article
                PPATHOGENS-D-12-00744
                10.1371/journal.ppat.1002830
                3410894
                22876176
                7b3a38e7-cb48-4c89-8e32-f967615321cd
                DuBois et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 26 March 2012
                : 13 June 2012
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Biochemistry
                Proteins
                Protein Structure
                Drug Discovery
                Enzymes
                Small Molecules
                Biophysics
                Biomacromolecule-Ligand Interactions
                Biotechnology
                Drug Discovery
                Microbiology
                Virology
                Viral Replication
                Viral Replication Complex
                Antivirals
                Viral Enzymes

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article