22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Competition for iron drives phytopathogen control by natural rhizosphere microbiomes

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Induced systemic resistance by beneficial microbes.

          Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic resistance (ISR) emerged as an important mechanism by which selected plant growth-promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathogens and insect herbivores. A wide variety of root-associated mutualists, including Pseudomonas, Bacillus, Trichoderma, and mycorrhiza species sensitize the plant immune system for enhanced defense without directly activating costly defenses. This review focuses on molecular processes at the interface between plant roots and ISR-eliciting mutualists, and on the progress in our understanding of ISR signaling and systemic defense priming. The central role of the root-specific transcription factor MYB72 in the onset of ISR and the role of phytohormones and defense regulatory proteins in the expression of ISR in aboveground plant parts are highlighted. Finally, the ecological function of ISR-inducing microbes in the root microbiome is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacterial iron homeostasis.

            Iron is essential to virtually all organisms, but poses problems of toxicity and poor solubility. Bacteria have evolved various mechanisms to counter the problems imposed by their iron dependence, allowing them to achieve effective iron homeostasis under a range of iron regimes. Highly efficient iron acquisition systems are used to scavenge iron from the environment under iron-restricted conditions. In many cases, this involves the secretion and internalisation of extracellular ferric chelators called siderophores. Ferrous iron can also be directly imported by the G protein-like transporter, FeoB. For pathogens, host-iron complexes (transferrin, lactoferrin, haem, haemoglobin) are directly used as iron sources. Bacterial iron storage proteins (ferritin, bacterioferritin) provide intracellular iron reserves for use when external supplies are restricted, and iron detoxification proteins (Dps) are employed to protect the chromosome from iron-induced free radical damage. There is evidence that bacteria control their iron requirements in response to iron availability by down-regulating the expression of iron proteins during iron-restricted growth. And finally, the expression of the iron homeostatic machinery is subject to iron-dependent global control ensuring that iron acquisition, storage and consumption are geared to iron availability and that intracellular levels of free iron do not reach toxic levels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Siderophore-based iron acquisition and pathogen control.

              High-affinity iron acquisition is mediated by siderophore-dependent pathways in the majority of pathogenic and nonpathogenic bacteria and fungi. Considerable progress has been made in characterizing and understanding mechanisms of siderophore synthesis, secretion, iron scavenging, and siderophore-delivered iron uptake and its release. The regulation of siderophore pathways reveals multilayer networks at the transcriptional and posttranscriptional levels. Due to the key role of many siderophores during virulence, coevolution led to sophisticated strategies of siderophore neutralization by mammals and (re)utilization by bacterial pathogens. Surprisingly, hosts also developed essential siderophore-based iron delivery and cell conversion pathways, which are of interest for diagnostic and therapeutic studies. In the last decades, natural and synthetic compounds have gained attention as potential therapeutics for iron-dependent treatment of infections and further diseases. Promising results for pathogen inhibition were obtained with various siderophore-antibiotic conjugates acting as "Trojan horse" toxins and siderophore pathway inhibitors. In this article, general aspects of siderophore-mediated iron acquisition, recent findings regarding iron-related pathogen-host interactions, and current strategies for iron-dependent pathogen control will be reviewed. Further concepts including the inhibition of novel siderophore pathway targets are discussed.
                Bookmark

                Author and article information

                Journal
                Nature Microbiology
                Nat Microbiol
                Springer Science and Business Media LLC
                2058-5276
                May 11 2020
                Article
                10.1038/s41564-020-0719-8
                32393858
                7b3b0a03-5b6c-448d-8dc9-e46cc0aa2a6f
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article