10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cyclic stretch promotes osteogenesis-related gene expression in osteoblast-like cells through a cofilin-associated mechanism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteoblasts have the capacity to perceive and transduce mechanical signals, and thus, regulate the mRNA and protein expression of a variety of genes associated with osteogenesis. Cytoskeletal reconstruction, as one of the earliest perception events for external mechanical stimulation, has previously been demonstrated to be essential for mechanotransduction in bone cells. However, the mechanism by which mechanical signals induce cytoskeletal deformation remains poorly understood. The actin-binding protein, cofilin, promotes the depolymerization of actin and is understood to be important in the regulation of activities in various cell types, including endothelial, neuronal and muscle cells. However, to the best of our knowledge, the importance of cofilin in osteoblastic mechanotransduction has not been previously investigated. In the present study, osteoblast-like MG-63 cells were subjected to physiological cyclic stretch stimulation (12% elongation) for 1, 4, 8, 12 and 24 h, and the expression levels of cofilin and osteogenesis-associated genes were quantified with reverse transcription-quantitative polymerase chain reaction, immunofluorescence staining and western blotting analyses. Additionally, knockdown of cofilin using RNA interference was conducted, and the mRNA levels of osteogenesis-associated genes were compared between osteoblast-like cells in the presence and absence of cofilin gene knockdown. The results of the present study demonstrated that cyclic stretch stimulates the expression of genes associated with osteoblastic activities in MG-63 cells, including alkaline phosphatase (ALP), osteocalcin (OCN), runt-related transcription factor 2 (Runx2) and collagen-1 (COL-1). Cyclic stretch also regulates the mRNA and protein expression of cofilin in MG-63 cells. Furthermore, stretch-induced increases in the levels of osteogenesis-associated genes, including ALP, OCN, Runx2 and COL-1, were reduced following cofilin gene knockdown. Together, these results demonstrate that cofilin is involved in the regulation of mechanical load-induced osteogenesis and, to the best of our knowledge, provides the first evidence demonstrating the importance of cofilin in osteoblastic mechanotransduction.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase.

          The actin cytoskeleton undergoes extensive remodeling during cell morphogenesis and motility. The small guanosine triphosphatase Rho regulates such remodeling, but the underlying mechanisms of this regulation remain unclear. Cofilin exhibits actin-depolymerizing activity that is inhibited as a result of its phosphorylation by LIM-kinase. Cofilin was phosphorylated in N1E-115 neuroblastoma cells during lysophosphatidic acid-induced, Rho-mediated neurite retraction. This phosphorylation was sensitive to Y-27632, a specific inhibitor of the Rho-associated kinase ROCK. ROCK, which is a downstream effector of Rho, did not phosphorylate cofilin directly but phosphorylated LIM-kinase, which in turn was activated to phosphorylate cofilin. Overexpression of LIM-kinase in HeLa cells induced the formation of actin stress fibers in a Y-27632-sensitive manner. These results indicate that phosphorylation of LIM-kinase by ROCK and consequently increased phosphorylation of cofilin by LIM-kinase contribute to Rho-induced reorganization of the actin cytoskeleton.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics.

            Extracellular signals regulate actin dynamics through small GTPases of the Rho/Rac/Cdc42 (p21) family. Here we show that p21-activated kinase (Pak1) phosphorylates LIM-kinase at threonine residue 508 within LIM-kinase's activation loop, and increases LIM-kinase-mediated phosphorylation of the actin-regulatory protein cofilin tenfold in vitro. In vivo, activated Rac or Cdc42 increases association of Pak1 with LIM-kinase; this association requires structural determinants in both the amino-terminal regulatory and the carboxy-terminal catalytic domains of Pak1. A catalytically inactive LIM-kinase interferes with Rac-, Cdc42- and Pak1-dependent cytoskeletal changes. A Pak1-specific inhibitor, corresponding to the Pak1 autoinhibitory domain, blocks LIM-kinase-induced cytoskeletal changes. Activated GTPases can thus regulate actin depolymerization through Pak1 and LIM-kinase.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An introductory review of cell mechanobiology.

              Mechanical loads induce changes in the structure, composition, and function of living tissues. Cells in tissues are responsible for these changes, which cause physiological or pathological alterations in the extracellular matrix (ECM). This article provides an introductory review of the mechanobiology of load-sensitive cells in vivo, which include fibroblasts, chondrocytes, osteoblasts, endothelial cells, and smooth muscle cells. Many studies have shown that mechanical loads affect diverse cellular functions, such as cell proliferation, ECM gene and protein expression, and the production of soluble factors. Major cellular components involved in the mechanotransduction mechanisms include the cytoskeleton, integrins, G proteins, receptor tyrosine kinases, mitogen-activated protein kinases, and stretch-activated ion channels. Future research in the area of cell mechanobiology will require novel experimental and theoretical methodologies to determine the type and magnitude of the forces experienced at the cellular and sub-cellular levels and to identify the force sensors/receptors that initiate the cascade of cellular and molecular events.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                July 2016
                10 May 2016
                10 May 2016
                : 14
                : 1
                : 218-224
                Affiliations
                [1 ]State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
                [2 ]Department of Stomatology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110084, P.R. China
                [3 ]Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
                Author notes
                Correspondence to: Dr Xue Feng, State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, P.R. China, E-mail: prof.fengxue@ 123456outlook.com
                Dr Da Jing, Department of Biomedical Engineering, Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, P.R. China, E-mail: jingdaasq@ 123456126.com
                [*]

                Contributed equally

                Article
                mmr-14-01-0218
                10.3892/mmr.2016.5239
                4918615
                27177232
                7b3befe0-8fd3-413f-b6ad-5acb67406e94
                Copyright: © Gao et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 22 May 2015
                : 11 April 2016
                Categories
                Articles

                osteoblasts,osteogensis,mechanotransduction,cyclic strain,cofilin

                Comments

                Comment on this article