2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pressure cycling technology for challenging proteomic sample processing: application to barnacle adhesive

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Successful proteomic characterization of biological material depends on the development of robust sample processing methods. The acorn barnacle Amphibalanus amphitrite is a biofouling model for adhesive processes, but the identification of causative proteins involved has been hindered by their insoluble nature. Although effective, existing sample processing methods are labor and time intensive, slowing progress in this field. Here, a more efficient sample processing method is described which exploits pressure cycling technology (PCT) in combination with protein solvents. PCT aids in protein extraction and digestion for proteomics analysis. Barnacle adhesive proteins can be extracted and digested in the same tube using PCT, minimizing sample loss, increasing throughput to 16 concurrently processed samples, and decreasing sample processing time to under 8 hours. PCT methods produced similar proteomes in comparison to previous methods. Two solvents which were ineffective at extracting proteins from the adhesive at ambient pressure (urea and methanol) produced more protein identifications under pressure than highly polar hexafluoroisopropanol, leading to the identification and description of >40 novel proteins at the interface. Some of these have homology to proteins with elastomeric properties or domains involved with protein-protein interactions, while many have no sequence similarity to proteins in publicly available databases, highlighting the unique adherent processes evolved by barnacles. The methods described here can not only be used to further characterize barnacle adhesive to combat fouling, but may also be applied to other recalcitrant biological samples, including aggregative or fibrillar protein matrices produced during disease, where a lack of efficient sample processing methods has impeded advancement. Data are available via ProteomeXchange with identifier PXD012730.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          The prophenoloxidase-activating system in invertebrates.

          A major innate defense system in invertebrates is the melanization of pathogens and damaged tissues. This important process is controlled by the enzyme phenoloxidase (PO) that in turn is regulated in a highly elaborate manner for avoiding unnecessary production of highly toxic and reactive compounds. Recent progress, especially in arthropods, in the elucidation of mechanisms controlling the activation of zymogenic proPO into active PO by a cascade of serine proteinases and other factors is reviewed. The proPO-activating system (proPO system) is triggered by the presence of minute amounts of compounds of microbial origins, such as beta-1,3-glucans, lipopolysaccharides, and peptidoglycans, which ensures that the system will become active in the presence of potential pathogens. The presence of specific proteinase inhibitors prevents superfluous activation. Concomitant with proPO activation, many other immune reactions will be produced, such as the generation of factors with anti-microbial, cytotoxic, opsonic, or encapsulation-promoting activities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Widespread Proteome Remodeling and Aggregation in Aging C. elegans.

            Aging has been associated with a progressive decline of proteostasis, but how this process affects proteome composition remains largely unexplored. Here, we profiled more than 5,000 proteins along the lifespan of the nematode C. elegans. We find that one-third of proteins change in abundance at least 2-fold during aging, resulting in a severe proteome imbalance. These changes are reduced in the long-lived daf-2 mutant but are enhanced in the short-lived daf-16 mutant. While ribosomal proteins decline and lose normal stoichiometry, proteasome complexes increase. Proteome imbalance is accompanied by widespread protein aggregation, with abundant proteins that exceed solubility contributing most to aggregate load. Notably, the properties by which proteins are selected for aggregation differ in the daf-2 mutant, and an increased formation of aggregates associated with small heat-shock proteins is observed. We suggest that sequestering proteins into chaperone-enriched aggregates is a protective strategy to slow proteostasis decline during nematode aging.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Insect cuticular sclerotization: a review.

              Different regions of an insect cuticle have different mechanical properties, partly due to different degrees of stabilization and hardening occurring during the process of sclerotization, whereby phenolic material is incorporated into the cuticular proteins. Our understanding of the chemistry of cuticular sclerotization has increased considerably since Mark Pryor in 1940 suggested that enzymatically generated ortho-quinones react with free amino groups, thereby crosslinking the cuticular proteins. The results obtained since then have confirmed the essential features of Pryor's suggestion, and the many observations and experiments, which have been obtained, have led to a detailed and rather complex picture of the sclerotization process, as described in this review. However, many important questions still remain unanswered, especially regarding the precise regional and temporal regulation of the various steps in the process. (c) 2009 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Integrative Biology
                Oxford University Press (OUP)
                1757-9708
                May 2019
                May 01 2019
                June 28 2019
                May 2019
                May 01 2019
                June 28 2019
                : 11
                : 5
                : 235-247
                Affiliations
                [1 ]National Research Council Research Associateship Programs Fellow, Washington, D.C., USA
                [2 ]Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, D.C., USA
                [3 ]Chemistry Division, Naval Research Laboratory, Washington, D.C., USA
                Article
                10.1093/intbio/zyz020
                7b40da86-12d9-477d-9626-6cca8948a55d
                © 2019

                http://creativecommons.org/licenses/by-nc/4.0/

                History

                Comments

                Comment on this article