51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function.

      Science (New York, N.Y.)
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The beta2-adrenergic receptor (beta2AR) is a well-studied prototype for heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) that respond to diffusible hormones and neurotransmitters. To overcome the structural flexibility of the beta2AR and to facilitate its crystallization, we engineered a beta2AR fusion protein in which T4 lysozyme (T4L) replaces most of the third intracellular loop of the GPCR ("beta2AR-T4L") and showed that this protein retains near-native pharmacologic properties. Analysis of adrenergic receptor ligand-binding mutants within the context of the reported high-resolution structure of beta2AR-T4L provides insights into inverse-agonist binding and the structural changes required to accommodate catecholamine agonists. Amino acids known to regulate receptor function are linked through packing interactions and a network of hydrogen bonds, suggesting a conformational pathway from the ligand-binding pocket to regions that interact with G proteins.

          Related collections

          Author and article information

          Journal
          10.1126/science.1150609
          17962519

          Comments

          Comment on this article

          Related Documents Log
          scite_