2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Major bacterial isolate and antibiotic resistance from routine clinical samples in Southern Ethiopia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Currently, antibiotic-resistant bacterial infections are a challenge for the health care system. Although physicians demand timely drug resistance data to guide empirical treatment, local data is rather scarce. Hence, this study performed a retrospective analysis of microbiological findings at the Hawassa public hospital. Secondary data were retrieved to assess the prevalence and level of drug resistance for the most common bacterial isolates from clinical samples processed at Hawassa University Comprehensive Specialized Hospital. Out of 1085 clinical samples processed in the microbiology laboratory, the prevalence of bacterial infection was 32.6%. Bacterial bloodstream infection was higher in children than in adults (OR, 4; 95% CI 1.8–14.6; p = 0.005). E. coli and K. pneumoniae were the commonest bacterial isolate both in children (36.8%, 26.3%) and in adults (33.3%, 26.7%) from the urine sample while, the leading bacteria identified from the CSF sample was P. aeruginosa, 37% in children and 43% in adult. In this study, all identified bacterial isolates were multi-drug resistant (MDR) ranging from 50 to 91%. The highest proportion of MDR was S. aureus 91.1 followed by K. pneumoniae 87.6%. Since the nationwide investigation of bacterial isolate, and drug resistance is rare in Ethiopia, a report from such type of local surveillance is highly useful to guide empirical therapy by providing awareness on the level resistance of isolates.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management.

          Staphylococcus aureus is a major human pathogen that causes a wide range of clinical infections. It is a leading cause of bacteremia and infective endocarditis as well as osteoarticular, skin and soft tissue, pleuropulmonary, and device-related infections. This review comprehensively covers the epidemiology, pathophysiology, clinical manifestations, and management of each of these clinical entities. The past 2 decades have witnessed two clear shifts in the epidemiology of S. aureus infections: first, a growing number of health care-associated infections, particularly seen in infective endocarditis and prosthetic device infections, and second, an epidemic of community-associated skin and soft tissue infections driven by strains with certain virulence factors and resistance to β-lactam antibiotics. In reviewing the literature to support management strategies for these clinical manifestations, we also highlight the paucity of high-quality evidence for many key clinical questions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extended-Spectrum β-Lactamases: a Clinical Update

            Extended-spectrum β-lactamases (ESBLs) are a rapidly evolving group of β-lactamases which share the ability to hydrolyze third-generation cephalosporins and aztreonam yet are inhibited by clavulanic acid. Typically, they derive from genes for TEM-1, TEM-2, or SHV-1 by mutations that alter the amino acid configuration around the active site of these β-lactamases. This extends the spectrum of β-lactam antibiotics susceptible to hydrolysis by these enzymes. An increasing number of ESBLs not of TEM or SHV lineage have recently been described. The presence of ESBLs carries tremendous clinical significance. The ESBLs are frequently plasmid encoded. Plasmids responsible for ESBL production frequently carry genes encoding resistance to other drug classes (for example, aminoglycosides). Therefore, antibiotic options in the treatment of ESBL-producing organisms are extremely limited. Carbapenems are the treatment of choice for serious infections due to ESBL-producing organisms, yet carbapenem-resistant isolates have recently been reported. ESBL-producing organisms may appear susceptible to some extended-spectrum cephalosporins. However, treatment with such antibiotics has been associated with high failure rates. There is substantial debate as to the optimal method to prevent this occurrence. It has been proposed that cephalosporin breakpoints for the Enterobacteriaceae should be altered so that the need for ESBL detection would be obviated. At present, however, organizations such as the Clinical and Laboratory Standards Institute (formerly the National Committee for Clinical Laboratory Standards) provide guidelines for the detection of ESBLs in klebsiellae and Escherichia coli . In common to all ESBL detection methods is the general principle that the activity of extended-spectrum cephalosporins against ESBL-producing organisms will be enhanced by the presence of clavulanic acid. ESBLs represent an impressive example of the ability of gram-negative bacteria to develop new antibiotic resistance mechanisms in the face of the introduction of new antimicrobial agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antimicrobial resistance: a global multifaceted phenomenon.

              Antimicrobial resistance (AMR) is one of the most serious global public health threats in this century. The first World Health Organization (WHO) Global report on surveillance of AMR, published in April 2014, collected for the first time data from national and international surveillance networks, showing the extent of this phenomenon in many parts of the world and also the presence of large gaps in the existing surveillance. In this review, we focus on antibacterial resistance (ABR), which represents at the moment the major problem, both for the high rates of resistance observed in bacteria that cause common infections and for the complexity of the consequences of ABR. We describe the health and economic impact of ABR, the principal risk factors for its emergence and, in particular, we illustrate the highlights of four antibiotic-resistant pathogens of global concern - Staphylococcus aureus, Klebsiella pneumoniae, non-typhoidal Salmonella and Mycobacterium tuberculosis - for whom we report resistance data worldwide. Measures to control the emergence and the spread of ABR are presented.
                Bookmark

                Author and article information

                Contributors
                mengemariamzenebe@gmail.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                5 October 2021
                5 October 2021
                2021
                : 11
                : 19710
                Affiliations
                [1 ]GRID grid.192268.6, ISNI 0000 0000 8953 2273, School of Medical Laboratory Science, , Hawassa University College of Medicine and Health Sciences, ; P.O. Box 1560, Hawassa, Ethiopia
                [2 ]GRID grid.192268.6, ISNI 0000 0000 8953 2273, Hawassa University Comprehensive and Specialized Hospital, ; Hawassa, Ethiopia
                Article
                99272
                10.1038/s41598-021-99272-2
                8492677
                34611232
                7b5d39f6-66cc-4aaf-86e5-c4ae80d8f43b
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 30 July 2020
                : 13 August 2021
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                microbiology,health care
                Uncategorized
                microbiology, health care

                Comments

                Comment on this article