14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Underlying mechanism of subcortical brain protection during hypoxia and reoxygenation in a sheep model - Influence of α1-adrenergic signalling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          While the cerebral autoregulation sufficiently protects subcortical brain regions during hypoxia or asphyxia, the cerebral cortex is not as adequately protected, which suggests that regulation of the cerebral blood flow (CBF) is area-specific. Hypoxia was induced by inhalation of 5% oxygen, for reoxygenation 100% oxygen was used. Cortical and subcortical CBF (by laser Doppler flowmetry), blood gases, mean arterial blood pressure (MABP), heart rate and renal blood flow were constantly monitored. Low dosed urapidil was used for α1A-adrenergic receptor blockade. Western blotting was used to determine adrenergic receptor signalling mediators in brain arterioles. During hypoxia cortical CBF decreased to 72 ± 11% (mean reduction 11 ± 3%, p < 0.001) of baseline, whereas subcortical CBF increased to 168±18% (mean increase 43 ± 5%, p < 0.001). Reoxygenation led to peak CBF of 194 ± 27% in the subcortex, and restored cortical CBF. α1A-Adrenergic blockade led to minor changes in cortical CBF, but massively reduced subcortical CBF during hypoxia and reoxygenation–almost aligning CBF in both brain regions. Correlation analyses revealed that α1A-adrenergic blockade renders all CBF-responses pressure-passive during hypoxia and reoxygenation, and confirmed the necessity of α1A-adrenergic signalling for coupling of CBF-responses to oxygen saturation. Expression levels and activation state of key signalling-mediators of α1-receptors (NOSs, CREB, ERK1/2) did not differ between cortex and subcortex. The dichotomy between subcortical and cortical CBF during hypoxia and reoxygenation critically depends on α1A-adrenergic receptors, but not on differential expression of signalling-mediators: signalling through the α1A-subtype is a prerequisite for cortical/subcortical redistribution of CBF.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Cardiac Output and Cerebral Blood Flow: The Integrated Regulation of Brain Perfusion in Adult Humans.

          Cerebral blood flow (CBF) is rigorously regulated by various powerful mechanisms to safeguard the match between cerebral metabolic demand and supply. The question of how a change in cardiac output (CO) affects CBF is fundamental, because CBF is dependent on constantly receiving a significant proportion of CO. The authors reviewed the studies that investigated the association between CO and CBF in healthy volunteers and patients with chronic heart failure. The overall evidence shows that an alteration in CO, either acutely or chronically, leads to a change in CBF that is independent of other CBF-regulating parameters including blood pressure and carbon dioxide. However, studies on the association between CO and CBF in patients with varying neurologic, medical, and surgical conditions were confounded by methodologic limitations. Given that CBF regulation is multifactorial but the various processes must exert their effects on the cerebral circulation simultaneously, the authors propose a conceptual framework that integrates the various CBF-regulating processes at the level of cerebral arteries/arterioles while still maintaining autoregulation. The clinical implications pertinent to the effect of CO on CBF are discussed. Outcome research relating to the management of CO and CBF in high-risk patients or during high-risk surgeries is needed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Brainstem in Emotion: A Review

            Emotions depend upon the integrated activity of neural networks that modulate arousal, autonomic function, motor control, and somatosensation. Brainstem nodes play critical roles in each of these networks, but prior studies of the neuroanatomic basis of emotion, particularly in the human neuropsychological literature, have mostly focused on the contributions of cortical rather than subcortical structures. Given the size and complexity of brainstem circuits, elucidating their structural and functional properties involves technical challenges. However, recent advances in neuroimaging have begun to accelerate research into the brainstem’s role in emotion. In this review, we provide a conceptual framework for neuroscience, psychology and behavioral science researchers to study brainstem involvement in human emotions. The “emotional brainstem” is comprised of three major networks – Ascending, Descending and Modulatory. The Ascending network is composed chiefly of the spinothalamic tracts and their projections to brainstem nuclei, which transmit sensory information from the body to rostral structures. The Descending motor network is subdivided into medial projections from the reticular formation that modulate the gain of inputs impacting emotional salience, and lateral projections from the periaqueductal gray, hypothalamus and amygdala that activate characteristic emotional behaviors. Finally, the brainstem is home to a group of modulatory neurotransmitter pathways, such as those arising from the raphe nuclei (serotonergic), ventral tegmental area (dopaminergic) and locus coeruleus (noradrenergic), which form a Modulatory network that coordinates interactions between the Ascending and Descending networks. Integration of signaling within these three networks occurs at all levels of the brainstem, with progressively more complex forms of integration occurring in the hypothalamus and thalamus. These intermediary structures, in turn, provide input for the most complex integrations, which occur in the frontal, insular, cingulate and other regions of the cerebral cortex. Phylogenetically older brainstem networks inform the functioning of evolutionarily newer rostral regions, which in turn regulate and modulate the older structures. Via these bidirectional interactions, the human brainstem contributes to the evaluation of sensory information and triggers fixed-action pattern responses that together constitute the finely differentiated spectrum of possible emotions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypoxemia, oxygen content, and the regulation of cerebral blood flow.

              This review highlights the influence of oxygen (O2) availability on cerebral blood flow (CBF). Evidence for reductions in O2 content (CaO2 ) rather than arterial O2 tension (PaO2 ) as the chief regulator of cerebral vasodilation, with deoxyhemoglobin as the primary O2 sensor and upstream response effector, is discussed. We review in vitro and in vivo data to summarize the molecular mechanisms underpinning CBF responses during changes in CaO2 . We surmise that 1) during hypoxemic hypoxia in healthy humans (e.g., conditions of acute and chronic exposure to normobaric and hypobaric hypoxia), elevations in CBF compensate for reductions in CaO2 and thus maintain cerebral O2 delivery; 2) evidence from studies implementing iso- and hypervolumic hemodilution, anemia, and polycythemia indicate that CaO2 has an independent influence on CBF; however, the increase in CBF does not fully compensate for the lower CaO2 during hemodilution, and delivery is reduced; and 3) the mechanisms underpinning CBF regulation during changes in O2 content are multifactorial, involving deoxyhemoglobin-mediated release of nitric oxide metabolites and ATP, deoxyhemoglobin nitrite reductase activity, and the downstream interplay of several vasoactive factors including adenosine and epoxyeicosatrienoic acids. The emerging picture supports the role of deoxyhemoglobin (associated with changes in CaO2 ) as the primary biological regulator of CBF. The mechanisms for vasodilation therefore appear more robust during hypoxemic hypoxia than during changes in CaO2 via hemodilution. Clinical implications (e.g., disorders associated with anemia and polycythemia) and future study directions are considered.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SoftwareRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Project administrationRole: Validation
                Role: Data curationRole: Formal analysisRole: SoftwareRole: ValidationRole: Writing – review & editing
                Role: ConceptualizationRole: ResourcesRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Project administrationRole: Writing – review & editing
                Role: SupervisionRole: Writing – review & editing
                Role: ConceptualizationRole: SupervisionRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: Project administrationRole: SupervisionRole: Writing – review & editing
                Role: SupervisionRole: Writing – review & editing
                Role: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SoftwareRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                29 May 2018
                2018
                : 13
                : 5
                : e0196363
                Affiliations
                [1 ] Orthopedic Department, Jena University Hospital—Friedrich Schiller University, Eisenberg, Germany
                [2 ] Department of Neurology, Jena University Hospital—Friedrich Schiller University, Jena, Germany
                [3 ] Inst. Lab Animal Sciences and Welfare, Jena University Hospital—Friedrich Schiller University, Jena, Germany
                [4 ] Institute of Medical Statistics, Computer Sciences and Documentation Science, Jena University Hospital—Friedrich Schiller University, Jena, Germany
                [5 ] Institute for Biochemistry II, Jena University Hospital—Friedrich Schiller University, Jena, Germany
                [6 ] Institute of Anatomy I, Jena University Hospital—Friedrich Schiller University, Jena, Germany
                Fraunhofer Research Institution of Marine Biotechnology, GERMANY
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0001-9546-6273
                Article
                PONE-D-17-33357
                10.1371/journal.pone.0196363
                5973577
                29813077
                7b6766ba-911f-44c6-91bf-0ffe4d38154d
                © 2018 Schiffner et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 September 2017
                : 11 April 2018
                Page count
                Figures: 7, Tables: 1, Pages: 22
                Funding
                Funded by: European Commission (FP7)
                Award ID: No. 2799281
                Award Recipient :
                The project was supported by the European Commission through the Seventh Framework Programme (FP7) No. 2799281 to MS.
                Categories
                Research Article
                Research and Analysis Methods
                Bioassays and Physiological Analysis
                Cardiovascular Analysis
                Cerebral Blood Flow Assay
                Biology and Life Sciences
                Cell Biology
                Hypoxia
                Medicine and Health Sciences
                Pulmonology
                Medical Hypoxia
                Physical Sciences
                Chemistry
                Chemical Elements
                Oxygen
                Biology and Life Sciences
                Anatomy
                Body Fluids
                Blood
                Blood Flow
                Medicine and Health Sciences
                Anatomy
                Body Fluids
                Blood
                Blood Flow
                Biology and Life Sciences
                Physiology
                Body Fluids
                Blood
                Blood Flow
                Medicine and Health Sciences
                Physiology
                Body Fluids
                Blood
                Blood Flow
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Vertebrates
                Amniotes
                Mammals
                Ruminants
                Sheep
                Biology and Life Sciences
                Anatomy
                Cardiovascular Anatomy
                Blood Vessels
                Arteries
                Carotid Arteries
                Medicine and Health Sciences
                Anatomy
                Cardiovascular Anatomy
                Blood Vessels
                Arteries
                Carotid Arteries
                Biology and Life Sciences
                Anatomy
                Cardiovascular Anatomy
                Blood Vessels
                Arteries
                Cerebral Arteries
                Medicine and Health Sciences
                Anatomy
                Cardiovascular Anatomy
                Blood Vessels
                Arteries
                Cerebral Arteries
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article