6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      3β,23,28-Trihydroxy-12-oleanene 3β-caffeate from Desmodium sambuense induced neurogenesis in PC12 cells mediated by ER stress and BDNF-TrkB signalling pathways

      , , , , , ,
      Molecular Pharmaceutics
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          3β,23,28-Trihydroxy-12-oleanene 3β-caffeate (compound 1) is a neuritogenic pentacyclic triterpenoid, which was isolated from Desmodium sambuense based on a PC12 cell bioassay system. Compound 1 induced neurite outgrowth dose-dependently in PC12 cells and primary cortical neurons at doses of 0.1, 0.3, and 1 μM. The potential target of compound 1 was predicted by ChemProteoBase profiling, and the mechanism of action was investigated using specific inhibitors, Western blot analysis, and PC12 [rasN17] and PC12 [mtGAP] mutants. Compound 1 activates endoplasmic reticulum (ER) as an ER stress inducer, and the maker of ER stress GRP78 protein significantly increased after treatment with compound 1. The inhibitors of tyrosine kinase B (TrkB), insulin-like growth factor 1 receptor (IGF-1R), mitogen-activated protein kinase (MEK), and phosphatidylinositol 3 kinase (PI3K) significantly decreased the neurite outgrowth induced by compound 1. Furthermore, the increases of phosphorylation of TrkB, IGF-1R, extracellular signal-regulated kinase (ERK), and protein kinase B (AKT) were observed in the compound 1-treated group, and the phosphorylation of these proteins was diminished by corresponding inhibitors. Thus, the compound-1-induced neuritogenic activity depended on the activation of slight ER stress and associated BDNF-TrkB/Ras/Raf/ERK and IGF-1R/PI3K/AKT signaling pathways in PC12 cells.

          Related collections

          Author and article information

          Journal
          Molecular Pharmaceutics
          Mol. Pharmaceutics
          American Chemical Society (ACS)
          1543-8384
          1543-8392
          February 14 2019
          February 14 2019
          Article
          10.1021/acs.molpharmaceut.8b00939
          30763105
          7b676fc4-fd81-42a1-a667-e4b04b32a9e3
          © 2019
          History

          Comments

          Comment on this article