Blog
About

6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long term substrate reduction therapy with ezetimibe alone or associated with statins in three adult patients with lysosomal acid lipase deficiency

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Lysosomal acid lipase deficiency is an autosomal recessive metabolic disease with a wide range of severity from Wolman Disease to Cholesterol Ester Storage Disease. Recently enzyme replacement therapy with sebelipase alpha has been approved by drug agencies for treatment of this lysosomal disease.

          Ezetimibe is an azetidine derivative which blocks Niemann Pick C1-Like 1 Protein; as its consequence, plasmatic concentration of low density lipoproteins and other apoB-containing lipoproteins, that are the substrate of lysosomal acid lipase, are decreased. Furthermore, ezetimibe acts by blocking inflammasome activation which is the cause of liver fibrosis in steatohepatitis and in lysosomal storage diseases.

          Results

          Two patients with Cholesterol Ester Storage Disease were treated with ezetimibe for 9 years and a third patients for 10 years. Treatment was supplemented with low dose of atorvastatin in the first two patients during the last 6 years. All patients showed a significant reduction of alanine aminotransferase, cholesterol and triglyceride. Furthermore, no progression of liver fibrosis was demonstrated.

          Conclusion

          In this observational case series, ezetimibe is effective, safe, and sustainable treatment for lysosomal acid lipase deficiency. Further studies are warranted to demonstrate that ezetimibe is an alternative therapy to enzyme replacement therapy.

          Related collections

          Most cited references 24

          • Record: found
          • Abstract: found
          • Article: not found

          NLRP3 inflammasome activation is required for fibrosis development in NAFLD.

          NLR inflammasomes, caspase 1 activation platforms critical for processing key pro-inflammatory cytokines, have been implicated in the development of nonalcoholic fatty liver disease (NAFLD). As the direct role of the NLRP3 inflammasome remains unclear, we tested effects of persistent NLRP3 activation as a contributor to NAFLD development and, in particular, as a modulator of progression from benign hepatic steatosis to steatohepatitis during diet-induced NAFLD. Gain of function tamoxifen-inducible Nlrp3 knock-in mice allowing for in vivo temporal control of NLRP3 activation and loss of function Nlrp3 knockout mice were placed on short-term choline-deficient amino acid-defined (CDAA) diet, to induce isolated hepatic steatosis or long-term CDAA exposure, to induce severe steatohepatitis and fibrosis, respectively. Expression of NLRP3 associated proteins was assessed in liver biopsies of a well-characterized group of patients with the full spectrum of NAFLD. Nlrp3(-/-) mice were protected from long-term feeding CDAA-induced hepatomegaly, liver injury, and infiltration of activated macrophages. More importantly, Nlrp3(-/-) mice showed marked protection from CDAA-induced liver fibrosis. After 4 weeks on CDAA diet, wild-type (WT) animals showed isolated hepatic steatosis while Nlrp3 knock-in mice showed severe liver inflammation, with increased infiltration of activated macrophages and early signs of liver fibrosis. In the liver samples of patients with NAFLD, inflammasome components were significantly increased in those patients with nonalcoholic steatohepatitis (NASH) when compared to those with non-NASH NAFLD with mRNA levels of pro-IL1 beta correlated to levels of COL1A1. Our study uncovers a crucial role for the NLRP3 inflammasome in the development of NAFLD. These findings may lead to novel therapeutic strategies aimed at halting the progression of hepatic steatosis to the more severe forms of this disease. Key message: Mice with NLRP3 inflammasome loss of function are protected from diet-induced steatohepatitis. NLRP3 inflammasome gain of function leads to early and severe onset of diet-induced steatohepatitis in mice. Patients with severe NAFLD exhibit increased levels of NLRP3 inflammasome components and levels of pro-IL1β mRNA correlate with the expression of COL1A1.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cholesteryl ester storage disease: review of the findings in 135 reported patients with an underdiagnosed disease.

            Cholesteryl ester storage disease (CESD) is caused by deficient lysosomal acid lipase (LAL) activity, predominantly resulting in cholesteryl ester (CE) accumulation, particularly in the liver, spleen, and macrophages throughout the body. The disease is characterized by microvesicular steatosis leading to liver failure, accelerated atherosclerosis and premature demise. Although CESD is rare, it is likely that many patients are unrecognized or misdiagnosed. Here, the findings in 135 CESD patients described in the literature are reviewed. Diagnoses were based on liver biopsies, LAL deficiency and/or LAL gene (LIPA) mutations. Hepatomegaly was present in 99.3% of patients; 74% also had splenomegaly. When reported, most patients had elevated serum total cholesterol, LDL-cholesterol, triglycerides, and transaminases (AST, ALT, or both), while HDL-cholesterol was decreased. All 112 liver biopsied patients had the characteristic pathology, which is progressive, and includes microvesicular steatosis, which leads to fibrosis, micronodular cirrhosis, and ultimately to liver failure. Pathognomonic birefringent CE crystals or their remnant clefts were observed in hepatic cells. Extrahepatic manifestations included portal hypertension, esophageal varices, and accelerated atherosclerosis. Liver failure in 17 reported patients resulted in liver transplantation and/or death. Genotyping identified 31 LIPA mutations in 55 patients; 61% of mutations were the common exon 8 splice-junction mutation (E8SJM(-1G>A)), for which 18 patients were homozygous. Genotype/phenotype correlations were limited; however, E8SJM(-1G>A) homozygotes typically had early-onset, slowly progressive disease. Supportive treatment included cholestyramine, statins, and, ultimately, liver transplantation. Recombinant LAL replacement was shown to be effective in animal models, and recently, a phase I/II clinical trial demonstrated its safety and indicated its potential metabolic efficacy. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lysosomal acid lipase deficiency--an under-recognized cause of dyslipidaemia and liver dysfunction.

              Lysosomal acid lipase deficiency (LAL-D) is a rare autosomal recessive lysosomal storage disease caused by deleterious mutations in the LIPA gene. The age at onset and rate of progression vary greatly and this may relate to the nature of the underlying mutations. Patients presenting in infancy have the most rapidly progressive disease, developing signs and symptoms in the first weeks of life and rarely surviving beyond 6 months of age. Children and adults typically present with some combination of dyslipidaemia, hepatomegaly, elevated transaminases, and microvesicular hepatosteatosis on biopsy. Liver damage with progression to fibrosis, cirrhosis and liver failure occurs in a large proportion of patients. Elevated low-density lipoprotein cholesterol levels and decreased high-density lipoprotein cholesterol levels are common features, and cardiovascular disease may manifest as early as childhood. Given that these clinical manifestations are shared with other cardiovascular, liver and metabolic diseases, it is not surprising that LAL-D is under-recognized in clinical practice. This article provides practical guidance to lipidologists, endocrinologists, cardiologists and hepatologists on how to recognize individuals with this life-limiting disease. A diagnostic algorithm is proposed with a view to achieving definitive diagnosis using a recently developed blood test for lysosomal acid lipase. Finally, current management options are reviewed in light of the ongoing development of enzyme replacement therapy with sebelipase alfa (Synageva BioPharma Corp., Lexington, MA, USA), a recombinant human lysosomal acid lipase enzyme.
                Bookmark

                Author and article information

                Contributors
                +39 01056362794 , majadirocco@gaslini.org
                livia.pisciotta@unige.it
                annalisamadeo@gaslini.org
                martabertamino@gaslini.org
                stefbert@unige.it
                Journal
                Orphanet J Rare Dis
                Orphanet J Rare Dis
                Orphanet Journal of Rare Diseases
                BioMed Central (London )
                1750-1172
                27 January 2018
                27 January 2018
                2018
                : 13
                Affiliations
                [1 ]ISNI 0000 0004 1760 0109, GRID grid.419504.d, Department of Pediatrics, Unit of Rare Diseases, , Giannina Gaslini Institute, ; Largo Gaslini 3, 16147 Genoa, Italy
                [2 ]ISNI 0000 0001 2151 3065, GRID grid.5606.5, Department of Internal Medicine, , University of Genoa, ; Viale Benedetto XV 6, 16132 Genoa, Italy
                768
                10.1186/s13023-018-0768-8
                5787265
                29374495
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                Categories
                Research
                Custom metadata
                © The Author(s) 2018

                Comments

                Comment on this article