9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of β-blockade on lung function, exercise performance and dynamic hyperinflation in people with arterial vascular disease with and without COPD

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          β Blockers are important treatment for ischaemic heart disease and heart failure; however, there has long been concern about their use in people with chronic obstructive pulmonary disease (COPD) due to fear of symptomatic worsening of breathlessness. Despite growing evidence of safety and efficacy, they remain underused. We examined the effect of β-blockade on lung function, exercise performance and dynamic hyperinflation in a group of vascular surgical patients, a high proportion of who were expected to have COPD.

          Methods

          People undergoing routine abdominal aortic aneurysm (AAA) surveillance were sequentially recruited from vascular surgery clinic. They completed plethysmographically measured lung function and incremental cardiopulmonary exercise testing with dynamic measurement of inspiratory capacity while taking and not taking β blocker.

          Results

          48 participants completed tests while taking and not taking β blockers with 38 completing all assessments successfully. 15 participants (39%) were found to have, predominantly mild and undiagnosed, COPD. People with COPD had airflow obstruction, increased airway resistance (Raw) and specific conductance (sGaw), static hyperinflation and dynamically hyperinflated during exercise. In the whole group, β-blockade led to a small fall in FEV1 (0.1 L/2.8% predicted) but did not affect Raw, sGaw, static or dynamic hyperinflation. No difference in response to β-blockade was seen in those with and without COPD.

          Conclusions

          In people with AAA, β-blockade has little effect on lung function and dynamic hyperinflation in those with and without COPD. In this population, the prevalence of COPD is high and consideration should be given to case finding with spirometry.

          Trial registration number

          NCT02106286.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: not found
          • Article: not found

          ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM).

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of beta-blockade on mortality among high-risk and low-risk patients after myocardial infarction.

            Long-term administration of beta-adrenergic blockers to patients after myocardial infarction improves survival. However, physicians are reluctant to administer beta-blockers to many patients, such as older patients and those with chronic pulmonary disease, left ventricular dysfunction, or non-Q-wave myocardial infarction. The medical records of 201,752 patients with myocardial infarction were abstracted by the Cooperative Cardiovascular Project, which was sponsored by the Health Care Financing Administration. Using a Cox proportional-hazards model that accounted for multiple factors that might influence survival, we compared mortality among patients treated with beta-blockers with mortality among untreated patients during the two years after myocardial infarction. A total of 34 percent of the patients received beta-blockers. The percentage was lower among the very elderly, blacks, and patients with the lowest ejection fractions, heart failure, chronic obstructive pulmonary disease, elevated serum creatinine concentrations, or type 1 diabetes mellitus. Nevertheless, mortality was lower in every subgroup of patients treated with beta-blockade than in untreated patients. In patients with myocardial infarction and no other complications, treatment with beta-blockers was associated with a 40 percent reduction in mortality. Mortality was also reduced by 40 percent in patients with non-Q-wave infarction and those with chronic obstructive pulmonary disease. Blacks, patients 80 years old or older, and those with a left ventricular ejection fraction below 20 percent, serum creatinine concentration greater than 1.4 mg per deciliter (124 micromol per liter), or diabetes mellitus had a lower percentage reduction in mortality. Given, however, the higher mortality rates in these subgroups, the absolute reduction in mortality was similar to or greater than that among patients with no specific risk factors. After myocardial infarction, patients with conditions that are often considered contraindications to beta-blockade (such as heart failure, pulmonary disease, and older age) and those with nontransmural infarction benefit from beta-blocker therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              COPD comorbidities network.

              Multimorbidity frequently affects the ageing population and their co-existence may not occur at random. Understanding their interactions and that with clinical variables could be important for disease screening and management.In a cohort of 1969 chronic obstructive pulmonary disease (COPD) patients and 316 non-COPD controls, we applied a network-based analysis to explore the associations between multiple comorbidities. Clinical characteristics (age, degree of obstruction, walking, dyspnoea, body mass index) and 79 comorbidities were identified and their interrelationships quantified. Using network visualisation software, we represented each clinical variable and comorbidity as a node with linkages representing statistically significant associations.The resulting COPD comorbidity network had 428, 357 or 265 linkages depending on the statistical threshold used (p≤0.01, p≤0.001 or p≤0.0001). There were more nodes and links in COPD compared with controls after adjusting for age, sex and number of subjects. In COPD, a subset of nodes had a larger number of linkages representing hubs. Four sub-networks or modules were identified using an inter-linkage affinity algorithm and their display provided meaningful interactions not discernible by univariate analysis.COPD patients are affected by larger number of multiple interlinked morbidities which clustering pattern may suggest common pathobiological processes or be utilised for screening and/or therapeutic interventions.
                Bookmark

                Author and article information

                Journal
                BMJ Open Respir Res
                BMJ Open Respir Res
                bmjresp
                bmjopenrespres
                BMJ Open Respiratory Research
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2052-4439
                2017
                5 April 2017
                : 4
                : 1
                : e000164
                Affiliations
                [1 ]Respiratory Department, Aintree University Hospitals NHS Foundation Trust , Liverpool, UK
                [2 ]Respiratory Research Group, Aintree University Hospitals NHS Foundation Trust , Liverpool, UK
                [3 ]Faculty of Health and Life Sciences, School of Physical Sciences, University of Liverpool , Liverpool, UK
                [4 ]Academic Unit of Cancer Sciences, Faculty of Medicine, University of Southampton , Southampton, UK
                [5 ]Cancer Research UK Liverpool Cancer Trials Unit, University of Liverpool , Liverpool, UK
                [6 ]Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust , Southampton, UK
                [7 ]Integrative Physiology and Critical Illness Group, Faculty of Medicine, University of Southampton , Southampton, UK
                [8 ]Liverpool Vascular and Endovascular Service, Aintree University Hospitals NHS Foundation Trust , Liverpool, UK
                Author notes
                [Correspondence to ] Dr Paul P Walker; ppwalker@ 123456liv.ac.uk
                Author information
                http://orcid.org/0000-0002-5449-9551
                Article
                bmjresp-2016-000164
                10.1136/bmjresp-2016-000164
                5387942
                28409004
                7b7218e0-33bd-4ad8-ab70-5c9a8fbc1d45
                Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

                This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

                History
                : 21 September 2016
                : 31 January 2017
                Categories
                Chronic Obstructive Pulmonary Disease
                1506
                2215

                lung physiology,exercise,copd pharmacology
                lung physiology, exercise, copd pharmacology

                Comments

                Comment on this article