29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influenza A viruses: an ecology review

      review-article
      , PhD *
      Infection Ecology & Epidemiology
      Co-Action Publishing
      influenza A virus, influenza, ecology, host range, species, review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In humans, influenza A viruses cause yearly outbreaks with high morbidity and excess fatality rates as a direct effect. Placed in its ecological niche, however – in dabbling ducks – avian influenza virus (AIV) induces quite a mild disease. It is when the virus crosses the species barrier that pathogenic traits are attributed to infection. When infecting phylogenetically more distant species (i.e. chicken and turkeys), the AIV can cause high morbidity and may in some cases change the virus into a highly pathogenic variant with nearly 100% fatality rate. Being a very adaptable virus, these spill-over events are frequent and numerous species are susceptible to influenza virus. When a subtype of AIV that has not previously infected humans crosses the species barrier, adapts to humans, and spreads easily, a pandemic event is imminent. There is no cure for influenza infection and vaccination is a cumbersome endeavor so, currently, the strategy when a pandemic strikes is damage control. The interest in AIV ecology has increased dramatically since the beginning of the millennium as a key factor for preventive work for future pandemics. This review gives a broad overview of influenza A virus ecology: in the natural host, accidental hosts, new endemic hosts, and humans.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls.

          In wild aquatic birds and poultry around the world, influenza A viruses carrying 15 antigenic subtypes of hemagglutinin (HA) and 9 antigenic subtypes of neuraminidase (NA) have been described. Here we describe a previously unidentified antigenic subtype of HA (H16), detected in viruses circulating in black-headed gulls in Sweden. In agreement with established criteria for the definition of antigenic subtypes, hemagglutination inhibition assays and immunodiffusion assays failed to detect specific reactivity between H16 and the previously described subtypes H1 to H15. Genetically, H16 HA was found to be distantly related to H13 HA, a subtype also detected exclusively in shorebirds, and the amino acid composition of the putative receptor-binding site of H13 and H16 HAs was found to be distinct from that in HA subtypes circulating in ducks and geese. The H16 viruses contained NA genes that were similar to those of other Eurasian shorebirds but genetically distinct from N3 genes detected in other birds and geographical locations. The European gull viruses were further distinguishable from other influenza A viruses based on their PB2, NP, and NS genes. Gaining information on the full spectrum of avian influenza A viruses and creating reagents for their detection and identification will remain an important task for influenza surveillance, outbreak control, and animal and public health. We propose that sequence analyses of HA and NA genes of influenza A viruses be used for the rapid identification of existing and novel HA and NA subtypes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A review of avian influenza in different bird species.

            Only type A influenza viruses are known to cause natural infections in birds, but viruses of all 15 haemagglutinin and all nine neuraminidase influenza A subtypes in the majority of possible combinations have been isolated from avian species. Influenza A viruses infecting poultry can be divided into two distinct groups on the basis of their ability to cause disease. The very virulent viruses cause highly pathogenic avian influenza (HPAI), in which mortality may be as high as 100%. These viruses have been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. All other viruses cause a much milder, primarily respiratory disease, which may be exacerbated by other infections or environmental conditions. Since 1959, primary outbreaks of HPAI in poultry have been reported 17 times (eight since 1990), five in turkeys and 12 in chickens. HPAI viruses are rarely isolated from wild birds, but extremely high isolation rates of viruses of low virulence for poultry have been recorded in surveillance studies, giving overall figures of about 15% for ducks and geese and around 2% for all other species. Influenza viruses have been shown to affect all types of domestic or captive birds in all areas of the world, but the frequency with which primary infections occur in any type of bird depends on the degree of contact there is with feral birds. Secondary spread is usually associated with human involvement, probably by transferring infective faeces from infected to susceptible birds.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular basis for the generation in pigs of influenza A viruses with pandemic potential.

              Genetic and biologic observations suggest that pigs may serve as "mixing vessels" for the generation of human-avian influenza A virus reassortants, similar to those responsible for the 1957 and 1968 pandemics. Here we demonstrate a structural basis for this hypothesis. Cell surface receptors for both human and avian influenza viruses were identified in the pig trachea, providing a milieu conducive to viral replication and genetic reassortment. Surprisingly, with continued replication, some avian-like swine viruses acquired the ability to recognize human virus receptors, raising the possibility of their direct transmission to human populations. These findings help to explain the emergence of pandemic influenza viruses and support the need for continued surveillance of swine for viruses carrying avian virus genes.
                Bookmark

                Author and article information

                Journal
                Infect Ecol Epidemiol
                Infect Ecol Epidemiol
                IEE
                Infection Ecology & Epidemiology
                Co-Action Publishing
                2000-8686
                11 February 2011
                2011
                : 1
                : 10.3402/iee.v1i0.6004
                Affiliations
                Department for Preparedness, Swedish Institute for Infectious Disease Control, Solna, Sweden
                Author notes
                [* ] John Wahlgren, Department for Preparedness, Swedish Institute for Infectious Disease Control, Nobels väg 18, SE-171 82 Solna, Sweden. Tel: +46-8-4572581. Email: john.wahlgren@ 123456smi.se
                Article
                IEE-1-6004
                10.3402/iee.v1i0.6004
                3426330
                22957113
                7b8ee42e-9a33-4a92-b10c-85b0a38d21d7
                © 2011 John Wahlgren

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 January 2011
                : 18 January 2011
                : 18 January 2011
                Categories
                Review Article

                Infectious disease & Microbiology
                host range,species,review,influenza,influenza a virus,ecology
                Infectious disease & Microbiology
                host range, species, review, influenza, influenza a virus, ecology

                Comments

                Comment on this article