Blog
About

128
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enrichr: a comprehensive gene set enrichment analysis web server 2016 update

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Enrichment analysis is a popular method for analyzing gene sets generated by genome-wide experiments. Here we present a significant update to one of the tools in this domain called Enrichr. Enrichr currently contains a large collection of diverse gene set libraries available for analysis and download. In total, Enrichr currently contains 180 184 annotated gene sets from 102 gene set libraries. New features have been added to Enrichr including the ability to submit fuzzy sets, upload BED files, improved application programming interface and visualization of the results as clustergrams. Overall, Enrichr is a comprehensive resource for curated gene sets and a search engine that accumulates biological knowledge for further biological discoveries. Enrichr is freely available at: http://amp.pharm.mssm.edu/Enrichr.

          Related collections

          Most cited references 21

          • Record: found
          • Abstract: not found
          • Article: not found

          Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DAVID: Database for Annotation, Visualization, and Integrated Discovery.

            Functional annotation of differentially expressed genes is a necessary and critical step in the analysis of microarray data. The distributed nature of biological knowledge frequently requires researchers to navigate through numerous web-accessible databases gathering information one gene at a time. A more judicious approach is to provide query-based access to an integrated database that disseminates biologically rich information across large datasets and displays graphic summaries of functional information. Database for Annotation, Visualization, and Integrated Discovery (DAVID; http://www.david.niaid.nih.gov) addresses this need via four web-based analysis modules: 1) Annotation Tool - rapidly appends descriptive data from several public databases to lists of genes; 2) GoCharts - assigns genes to Gene Ontology functional categories based on user selected classifications and term specificity level; 3) KeggCharts - assigns genes to KEGG metabolic processes and enables users to view genes in the context of biochemical pathway maps; and 4) DomainCharts - groups genes according to PFAM conserved protein domains. Analysis results and graphical displays remain dynamically linked to primary data and external data repositories, thereby furnishing in-depth as well as broad-based data coverage. The functionality provided by DAVID accelerates the analysis of genome-scale datasets by facilitating the transition from data collection to biological meaning.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes.

              We present a simple but powerful procedure to extract Gene Ontology (GO) terms that are significantly over- or under-represented in sets of genes within the context of a genome-scale experiment (DNA microarray, proteomics, etc.). Said procedure has been implemented as a web application, FatiGO, allowing for easy and interactive querying. FatiGO, which takes the multiple-testing nature of statistical contrast into account, currently includes GO associations for diverse organisms (human, mouse, fly, worm and yeast) and the TrEMBL/Swissprot GOAnnotations@EBI correspondences from the European Bioinformatics Institute.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                08 July 2016
                03 May 2016
                03 May 2016
                : 44
                : Web Server issue
                : W90-W97
                Affiliations
                [1 ]Department of Pharmacology and Systems Therapeutics, BD2K-LINCS Data Coordination and Integration Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1215, New York, NY 10029, USA
                [2 ]Fluid Physics and Transport Processes Branch, NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, USA
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +1 212 241 1153; Fax: +1 212 996 7214; Email: avi.maayan@ 123456mssm.edu
                Article
                10.1093/nar/gkw377
                4987924
                27141961
                © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                Page count
                Pages: 8
                Product
                Categories
                Web Server issue
                Custom metadata
                08 July 2016

                Genetics

                Comments

                Comment on this article