53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Clinical review: Patency of the circuit in continuous renal replacement therapy

      review-article
      1 , 2 ,
      Critical Care
      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Premature circuit clotting is a major problem in daily practice of continuous renal replacement therapy (CRRT), increasing blood loss, workload, and costs. Early clotting is related to bioincompatibility, critical illness, vascular access, CRRT circuit, and modality. This review discusses non-anticoagulant and anticoagulant measures to prevent circuit failure. These measures include optimization of the catheter (inner diameter, pattern of flow, and position), the settings of CRRT (partial predilution and individualized control of filtration fraction), and the training of nurses. In addition, anticoagulation is generally required. Systemic anticoagulation interferes with plasmatic coagulation, platelet activation, or both and should be kept at a low dose to mitigate bleeding complications. Regional anticoagulation with citrate emerges as the most promising method.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          The protein C pathway.

          The protein C anticoagulant pathway serves as a major system for controlling thrombosis, limiting inflammatory responses, and potentially decreasing endothelial cell apoptosis in response to inflammatory cytokines and ischemia. The essential components of the pathway involve thrombin, thrombomodulin, the endothelial cell protein C receptor (EPCR), protein C, and protein S. Thrombomodulin binds thrombin, directly inhibiting its clotting and cell activation potential while at the same time augmenting protein C (and thrombin activatable fibrinolysis inhibitor [TAFI]) activation. Furthermore, thrombin bound to thrombomodulin is inactivated by plasma protease inhibitors > 20 times faster than free thrombin, resulting in increased clearance of thrombin from the circulation. The inhibited thrombin rapidly dissociates from thrombomodulin, regenerating the anticoagulant surface. Thrombomodulin also has direct anti-inflammatory activity, minimizing cytokine formation in the endothelium and decreasing leukocyte-endothelial cell adhesion. EPCR augments protein C activation approximately 20-fold in vivo by binding protein C and presenting it to the thrombin-thrombomodulin activation complex. Activated protein C (APC) retains its ability to bind EPCR, and this complex appears to be involved in some of the cellular signaling mechanisms that down-regulate inflammatory cytokine formation (tumor necrosis factor, interleukin-6). Once APC dissociates from EPCR, it binds to protein S on appropriate cell surfaces where it inactivates factors Va and VIIIa, thereby inhibiting further thrombin generation. Clinical studies reveal that deficiencies of protein C lead to microvascular thrombosis (purpura fulminans). During severe sepsis, a combination of protein C consumption, protein S inactivation, and reduction in activity of the activation complex by oxidation, cytokine-mediated down-regulation, and proteolytic release of the activation components sets in motion conditions that would favor an acquired defect in the protein C pathway, which in turn favors microvascular thrombosis, increased leukocyte adhesion, and increased cytokine formation. APC has been shown clinically to protect patients with severe sepsis. Protein C and thrombomodulin are in early stage clinical trials for this disease, and each has distinct potential advantages and disadvantages relative to APC.
            • Record: found
            • Abstract: found
            • Article: not found

            Heparin and low-molecular-weight heparin: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy.

            This article about unfractionated heparin (UFH) and low-molecular-weight heparin (LMWH) is part of the Seventh American College of Chest Physicians Conference on Antithrombotic and Thrombolytic Therapy: Evidence-Based Guidelines. UFH is a heterogeneous mixture of glycosaminoglycans that bind to antithrombin via a pentasaccharide, catalyzing the inactivation of thrombin and other clotting factors. UFH also binds endothelial cells, platelet factor 4, and platelets, leading to rather unpredictable pharmacokinetic and pharmacodynamic properties. Variability in activated partial thromboplastin time (aPTT) reagents necessitates site-specific validation of the aPTT therapeutic range in order to properly monitor UFH therapy. Lack of validation has been an oversight in many clinical trials comparing UFH to LMWH. In patients with apparent heparin resistance, anti-factor Xa monitoring may be superior to measurement of aPTT. LMWHs lack the nonspecific binding affinities of UFH, and, as a result, LMWH preparations have more predictable pharmacokinetic and pharmacodynamic properties. LMWHs have replaced UFH for most clinical indications for the following reasons: (1) these properties allow LMWHs to be administered subcutaneously, once daily without laboratory monitoring; and (2) the evidence from clinical trials that LMWH is as least as effective as and is safer than UFH. Several clinical issues regarding the use of LMWHs remain unanswered. These relate to the need for monitoring with an anti-factor Xa assay in patients with severe obesity or renal insufficiency. The therapeutic range for anti-factor Xa activity depends on the dosing interval. Anti-factor Xa monitoring is prudent when administering weight-based doses of LMWH to patients who weigh > 150 kg. It has been determined that UFH infusion is preferable to LMWH injection in patients with creatinine clearance of < 25 mL/min, until further data on therapeutic dosing of LMWHs in renal failure have been published. However, when administered in low doses prophylactically, LMWH is safe for therapy in patients with renal failure. Protamine may help to reverse bleeding related to LWMH, although anti-factor Xa activity is not fully normalized by protamine. The synthetic pentasaccharide fondaparinux is a promising new antithrombotic agent for the prevention and treatment of venous thromboembolism.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients

              Introduction Central venous cannulation is crucial in the management of the critical care patient. This study was designed to evaluate whether real-time ultrasound-guided cannulation of the internal jugular vein is superior to the standard landmark method. Methods In this randomised study, 450 critical care patients who underwent real-time ultrasound-guided cannulation of the internal jugular vein were prospectively compared with 450 critical care patients in whom the landmark technique was used. Randomisation was performed by means of a computer-generated random-numbers table, and patients were stratified with regard to age, gender, and body mass index. Results There were no significant differences in gender, age, body mass index, or side of cannulation (left or right) or in the presence of risk factors for difficult venous cannulation such as prior catheterisation, limited sites for access attempts, previous difficulties during catheterisation, previous mechanical complication, known vascular abnormality, untreated coagulopathy, skeletal deformity, and cannulation during cardiac arrest between the two groups of patients. Furthermore, the physicians who performed the procedures had comparable experience in the placement of central venous catheters (p = non-significant). Cannulation of the internal jugular vein was achieved in all patients by using ultrasound and in 425 of the patients (94.4%) by using the landmark technique (p < 0.001). Average access time (skin to vein) and number of attempts were significantly reduced in the ultrasound group of patients compared with the landmark group (p < 0.001). In the landmark group, puncture of the carotid artery occurred in 10.6% of patients, haematoma in 8.4%, haemothorax in 1.7%, pneumothorax in 2.4%, and central venous catheter-associated blood stream infection in 16%, which were all significantly increased compared with the ultrasound group (p < 0.001). Conclusion The present data suggest that ultrasound-guided catheterisation of the internal jugular vein in critical care patients is superior to the landmark technique and therefore should be the method of choice in these patients.

                Author and article information

                Journal
                Crit Care
                Critical Care
                BioMed Central
                1364-8535
                1466-609X
                2007
                12 July 2007
                : 11
                : 4
                : 218
                Affiliations
                [1 ]Medical Intensive Care Unit, Division of General Internal Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
                [2 ]Department of Intensive Care Medicine, Onze Lieve Vrouwe Gasthuis, Oosterpark 9, 1091 AC Amsterdam, The Netherlands
                Article
                cc5937
                10.1186/cc5937
                2206533
                17634148
                7ba13983-0c26-4084-bcae-9998e73b5722
                Copyright © 2007 BioMed Central Ltd
                History
                Categories
                Review

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article

                Related Documents Log