0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modeling on Regional Atmosphere-Soil-Land Plant Carbon Cycle Dynamic System

      , , , , ,
      Sustainability
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          The carbon balance of terrestrial ecosystems in China.

          Global terrestrial ecosystems absorbed carbon at a rate of 1-4 Pg yr(-1) during the 1980s and 1990s, offsetting 10-60 per cent of the fossil-fuel emissions. The regional patterns and causes of terrestrial carbon sources and sinks, however, remain uncertain. With increasing scientific and political interest in regional aspects of the global carbon cycle, there is a strong impetus to better understand the carbon balance of China. This is not only because China is the world's most populous country and the largest emitter of fossil-fuel CO(2) into the atmosphere, but also because it has experienced regionally distinct land-use histories and climate trends, which together control the carbon budget of its ecosystems. Here we analyse the current terrestrial carbon balance of China and its driving mechanisms during the 1980s and 1990s using three different methods: biomass and soil carbon inventories extrapolated by satellite greenness measurements, ecosystem models and atmospheric inversions. The three methods produce similar estimates of a net carbon sink in the range of 0.19-0.26 Pg carbon (PgC) per year, which is smaller than that in the conterminous United States but comparable to that in geographic Europe. We find that northeast China is a net source of CO(2) to the atmosphere owing to overharvesting and degradation of forests. By contrast, southern China accounts for more than 65 per cent of the carbon sink, which can be attributed to regional climate change, large-scale plantation programmes active since the 1980s and shrub recovery. Shrub recovery is identified as the most uncertain factor contributing to the carbon sink. Our data and model results together indicate that China's terrestrial ecosystems absorbed 28-37 per cent of its cumulated fossil carbon emissions during the 1980s and 1990s.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamic disequilibrium of the terrestrial carbon cycle under global change.

            In this review, we propose a new framework, dynamic disequilibrium of the carbon cycles, to assess future land carbon-sink dynamics. The framework recognizes internal ecosystem processes that drive the carbon cycle toward equilibrium, such as donor pool-dominated transfer; and external forces that create disequilibrium, such as disturbances and global change. Dynamic disequilibrium within one disturbance-recovery episode causes temporal changes in the carbon source and sink at yearly and decadal scales, but has no impacts on longer-term carbon sequestration unless disturbance regimes shift. Such shifts can result in long-term regional carbon loss or gain and be quantified by stochastic statistics for use in prognostic modeling. If the regime shifts result in ecosystem state changes in regions with large carbon reserves at risk, the global carbon cycle might be destabilized. Copyright © 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Evolution of carbon cycle over the past 100 million years

                Bookmark

                Author and article information

                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                April 2016
                March 25 2016
                : 8
                : 4
                : 303
                Article
                10.3390/su8040303
                7bab981a-4974-457d-aa12-5bd77cabf46d
                © 2016

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article