13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plant immunization for resistance against a wide variety of phytopathogens is an effective strategy for plant disease management. Seventy-nine plant growth-promoting fungi (PGPFs) were isolated from rhizosphere soil of India. Among them, nine revealed saprophytic ability, root colonization, phosphate solubilization, IAA production, and plant growth promotion. Seed priming with four PGPFs exhibited early seedling emergence and enhanced vigour of a tomato cultivar susceptible to the bacterial wilt pathogen compared to untreated controls. Under greenhouse conditions, TriH_JSB27 and PenC_JSB41 treatments remarkably enhanced the vegetative and reproductive growth parameters. Maximum NPK uptake was noticed in TriH_JSB27-treated plants. A significant disease reduction of 57.3% against Ralstonia solanacearum was observed in tomato plants pretreated with TriH_JSB27. Furthermore, induction of defence-related enzymes and genes was observed in plants pretreated with PGPFs or inoculated with pathogen. The maximum phenylalanine ammonia lyase (PAL) activity (111U) was observed at 24h in seedlings treated with TriH_JSB27 and this activity was slightly reduced (99U) after pathogen inoculation. Activities of peroxidase (POX, 54U) and β-1,3-glucanase (GLU, 15U) were significantly higher in control plants inoculated with pathogen after 24h and remained constant at all time points. A similar trend in gene induction for PAL was evident in PGPFs-treated tomato seedlings with or without pathogen inoculation, whereas POX and GLU were upregulated in control plus pathogen-inoculated tomato seedlings. These results determine that the susceptible tomato cultivar is triggered after perception of potent PGPFs to synthesize PAL, POX, and GLU, which activate defence resistance against bacterial wilt disease, thereby contributing to plant health improvement.

          Related collections

          Author and article information

          Journal
          J. Exp. Bot.
          Journal of experimental botany
          Oxford University Press (OUP)
          1460-2431
          0022-0957
          Sep 2013
          : 64
          : 12
          Affiliations
          [1 ] Laboratory of Molecular Plant Pathology, Department of Biological and Environmental Sciences, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan.
          Article
          ert212
          10.1093/jxb/ert212
          23956415
          7bbb6035-b1c5-4954-8515-b4a298d64df6
          History

          Bacterial wilt,defence-related enzymes and genes,growth promotion,induced systemic resistance,phosphate solubilization,plant growth-promoting fungi,tomato.

          Comments

          Comment on this article