5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Global analysis of gene expression and projection target correlations in the mouse brain

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent studies have shown that projection targets in the mouse neocortex are correlated with their gene expression patterns. However, a brain-wide quantitative analysis of the relationship between voxel genetic composition and their projection targets is lacking to date. Here we extended those studies to perform a global, integrative analysis of gene expression and projection target correlations in the mouse brain. By using the Allen Brain Atlas data, we analyzed the relationship between gene expression and projection targets. We first visualized and clustered the two data sets separately and showed that they both exhibit strong spatial autocorrelation. Building upon this initial analysis, we conducted an integrative correlation analysis of the two data sets while correcting for their spatial autocorrelation. This resulted in a correlation of 0.19 with significant p value. We further identified the top genes responsible for this correlation using two greedy gene ranking techniques. Using only the top genes identified by those techniques, we recomputed the correlation between these two data sets. This led to correlation values up to 0.49 with significant p values. Our results illustrated that although the target specificity of neurons is in fact complex and diverse, yet they are strongly affected by their genetic and molecular compositions.

          Electronic supplementary material

          The online version of this article (doi:10.1007/s40708-015-0014-2) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          A mesoscale connectome of the mouse brain.

          Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system

            The Allen Brain Atlas (http://www.brain-map.org) provides a unique online public resource integrating extensive gene expression data, connectivity data and neuroanatomical information with powerful search and viewing tools for the adult and developing brain in mouse, human and non-human primate. Here, we review the resources available at the Allen Brain Atlas, describing each product and data type [such as in situ hybridization (ISH) and supporting histology, microarray, RNA sequencing, reference atlases, projection mapping and magnetic resonance imaging]. In addition, standardized and unique features in the web applications are described that enable users to search and mine the various data sets. Features include both simple and sophisticated methods for gene searches, colorimetric and fluorescent ISH image viewers, graphical displays of ISH, microarray and RNA sequencing data, Brain Explorer software for 3D navigation of anatomy and gene expression, and an interactive reference atlas viewer. In addition, cross data set searches enable users to query multiple Allen Brain Atlas data sets simultaneously. All of the Allen Brain Atlas resources can be accessed through the Allen Brain Atlas data portal.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cortico-cortical projections in mouse visual cortex are functionally target specific.

              Neurons in primary sensory cortex have diverse response properties, whereas higher cortical areas are specialized. Specific connectivity may be important for areal specialization, particularly in the mouse, where neighboring neurons are functionally diverse. To examine whether higher visual areas receive functionally specific input from primary visual cortex (V1), we used two-photon calcium imaging to measure responses of axons from V1 arborizing in three areas with distinct spatial and temporal frequency preferences. We found that visual preferences of presynaptic boutons in each area were distinct and matched the average preferences of recipient neurons. This specificity could not be explained by organization within V1 and instead was due to both a greater density and greater response amplitude of functionally matched boutons. Projections from a single layer (layer 5) and from secondary visual cortex were also matched to their target areas. Thus, transmission of specific information to downstream targets may be a general feature of cortico-cortical communication.
                Bookmark

                Author and article information

                Contributors
                +1-757-683-7717 , afakhry@cs.odu.edu
                +1-757-683-7717 , tzeng@cs.odu.edu
                +1-206-548-8416 , hanchuanp@alleninstitute.org
                +1-757-683-7717 , sji@cs.odu.edu
                Journal
                Brain Inform
                Brain Inform
                Brain Informatics
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                2198-4018
                2198-4026
                20 March 2015
                20 March 2015
                June 2015
                : 2
                : 2
                : 107-117
                Affiliations
                [1 ]Department of Computer Science, Old Dominion University, Norfolk, VA 23529 USA
                [2 ]Allen Institute for Brain Science, Seattle, WA 98103 USA
                Article
                14
                10.1007/s40708-015-0014-2
                4883149
                7bbd2e68-14d8-450a-8872-c7d00bfde115
                © The Author(s) 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                History
                : 27 October 2014
                : 5 March 2015
                Categories
                Article
                Custom metadata
                © The Author(s) 2015

                projection targets,gene expression patterns,visualization,clustering,correlation,feature selection

                Comments

                Comment on this article