4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic and Biochemical Evidence That Enterococcus faecalis Gr17 Produces a Novel and Sec-Dependent Bacteriocin, Enterocin Gr17

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacteriocins are ribosomally synthesized antibacterial peptides or proteins from microorganisms. We report a novel bacteriocin producing strain, Enterococcus faecalis Gr17, that was isolated from the Chinese traditional low-salt fermented whole fish product Suan yu. E. faecalis Gr17 displayed potent antibacterial activity against foodborne pathogenic and spoilage bacteria. The complete genome of E. faecalis Gr17 contained one circular chromosome and plasmid. The gene cluster of a novel bacteriocin designated enterocin Gr17 was identified. The enterocin Gr17 structural gene encodes a precursor of the bacteriocin. Two other transporter genes and an immunity gene within two divergent operons were identified as being associated with enterocin Gr17 secretion and protection. The novel enterocin Gr17 was purified by ammonium sulfate precipitation, cation exchange, gel filtration, and reverse-phase high-performance liquid chromatography. The molecular weight of enterocin Gr17 was 4,531.01 Da as determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and its mature amino acid sequence of enterocin Gr17 was RSYGNGVYCNNSKCWVNWGEAKENIIGIVISGWATGLAGMGR. Sequence alignment revealed that enterocin Gr17 is a class IIa bacteriocin with similarities to enterocin P. The merits of bactericidal activity, sensitivity to enzymes, and pronounced stability to chemicals, temperature (60°C, 30 min and 121°C, 15 min), and pH (2–10) indicated practicality and safety of enterocin Gr17 in the food industry. The complete genome information of E. faecalis Gr17 will improve the understanding of the biosynthetic mechanism of enterocin Gr17, which has potential value as a food biopreservative.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Bacteriocin-based strategies for food biopreservation.

          Bacteriocins are ribosomally-synthesized peptides or proteins with antimicrobial activity, produced by different groups of bacteria. Many lactic acid bacteria (LAB) produce bacteriocins with rather broad spectra of inhibition. Several LAB bacteriocins offer potential applications in food preservation, and the use of bacteriocins in the food industry can help to reduce the addition of chemical preservatives as well as the intensity of heat treatments, resulting in foods which are more naturally preserved and richer in organoleptic and nutritional properties. This can be an alternative to satisfy the increasing consumers demands for safe, fresh-tasting, ready-to-eat, minimally-processed foods and also to develop "novel" food products (e.g. less acidic, or with a lower salt content). In addition to the available commercial preparations of nisin and pediocin PA-1/AcH, other bacteriocins (like for example lacticin 3147, enterocin AS-48 or variacin) also offer promising perspectives. Broad-spectrum bacteriocins present potential wider uses, while narrow-spectrum bacteriocins can be used more specifically to selectively inhibit certain high-risk bacteria in foods like Listeria monocytogenes without affecting harmless microbiota. Bacteriocins can be added to foods in the form of concentrated preparations as food preservatives, shelf-life extenders, additives or ingredients, or they can be produced in situ by bacteriocinogenic starters, adjunct or protective cultures. Immobilized bacteriocins can also find application for development of bioactive food packaging. In recent years, application of bacteriocins as part of hurdle technology has gained great attention. Several bacteriocins show additive or synergistic effects when used in combination with other antimicrobial agents, including chemical preservatives, natural phenolic compounds, as well as other antimicrobial proteins. This, as well as the combined use of different bacteriocins may also be an attractive approach to avoid development of resistant strains. The combination of bacteriocins and physical treatments like high pressure processing or pulsed electric fields also offer good opportunities for more effective preservation of foods, providing an additional barrier to more refractile forms like bacterial endospores as well. The effectiveness of bacteriocins is often dictated by environmental factors like pH, temperature, food composition and structure, as well as the food microbiota. Foods must be considered as complex ecosystems in which microbial interactions may have a great influence on the microbial balance and proliferation of beneficial or harmful bacteria. Recent developments in molecular microbial ecology can help to better understand the global effects of bacteriocins in food ecosystems, and the study of bacterial genomes may reveal new sources of bacteriocins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role and application of enterococci in food and health.

            The genus Enterococcus is the most controversial group of lactic acid bacteria. Studies on the microbiota of many traditional cheeses in the Mediterranean countries have indicated that enterococci play an important role in the ripening of these cheeses, probably through proteolysis, lipolysis, and citrate breakdown, hence contributing to their typical taste and flavour. Enterococci are also present in other fermented foods, such as sausages and olives. However, their role in these products has not been fully elucidated. Furthermore, the production of bacteriocins by enterococci is well documented. Moreover, enterococci are nowadays used as probiotics. At the same time, however, enterococci have been associated with a number of human infections. Several virulence factors have been described and the number of vancomycin-resistant enterococci is increasing. The controversial nature of enterococci has prompted an enormous increase in scientific papers and reviews in recent years, where researchers have been divided into two groups, namely pro and contra enterococci. To the authors' impression, the negative traits have been focused on very extensively. The aim of the present review is to give a balanced overview of both beneficial and virulence features of this divisive group of microorganisms, because it is only acquaintance with both sides that may allow their safe exploitation as starter cultures or co-cultures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bacteriocins of gram-positive bacteria.

              In recent years, a group of antibacterial proteins produced by gram-positive bacteria have attracted great interest in their potential use as food preservatives and as antibacterial agents to combat certain infections due to gram-positive pathogenic bacteria. They are ribosomally synthesized peptides of 30 to less than 60 amino acids, with a narrow to wide antibacterial spectrum against gram-positive bacteria; the antibacterial property is heat stable, and a producer strain displays a degree of specific self-protection against its own antibacterial peptide. In many respects, these proteins are quite different from the colicins and other bacteriocins produced by gram-negative bacteria, yet customarily they also are grouped as bacteriocins. Although a large number of these bacteriocins (or bacteriocin-like inhibitory substances) have been reported, only a few have been studied in detail for their mode of action, amino acid sequence, genetic characteristics, and biosynthesis mechanisms. Nevertheless, in general, they appear to be translated as inactive prepeptides containing an N-terminal leader sequence and a C-terminal propeptide component. During posttranslational modifications, the leader peptide is removed. In addition, depending on the particular type, some amino acids in the propeptide components may undergo either dehydration and thioether ring formation to produce lanthionine and beta-methyl lanthionine (as in lantibiotics) or thio ester ring formation to form cystine (as in thiolbiotics). Some of these steps, as well as the translocation of the molecules through the cytoplasmic membrane and producer self-protection against the homologous bacteriocin, are mediated through specific proteins (enzymes). Limited genetic studies have shown that the structural gene for such a bacteriocin and the genes encoding proteins associated with immunity, translocation, and processing are present in a cluster in either a plasmid, the chromosome, or a transposon. Following posttranslational modification and depending on the pH, the molecules may either be released into the environment or remain bound to the cell wall. The antibacterial action against a sensitive cell of a gram-positive strain is produced principally by destabilization of membrane functions. Under certain conditions, gram-negative bacterial cells can also be sensitive to some of these molecules. By application of site-specific mutagenesis, bacteriocin variants which may differ in their antimicrobial spectrum and physicochemical characteristics can be produced. Research activity in this field has grown remarkably but sometimes with an undisciplined regard for conformity in the definition, naming, and categorization of these molecules and their genetic effectors. Some suggestions for improved standardization of nomenclature are offered.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                13 August 2019
                2019
                : 10
                : 1806
                Affiliations
                [1] 1Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University , Beijing, China
                [2] 2Beijing Academy of Agricultural and Forestry Sciences , Beijing, China
                Author notes

                Edited by: Yi-Cheng Sun, Institute of Pathogen Biology (CAMS), China

                Reviewed by: Venkatesan Arul, Pondicherry University, India; Charles M. A. P. Franz, Max Rubner Institut, Germany

                *Correspondence: Yao Wang, wangyao130897@ 123456163.com

                This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.01806
                6700250
                31456764
                7bc0e214-0732-470c-b1cd-0e290ad9feb8
                Copyright © 2019 Liu, Wang, Li, Hao, Xu, Zhou, Mehmood and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 November 2018
                : 22 July 2019
                Page count
                Figures: 5, Tables: 5, Equations: 0, References: 67, Pages: 12, Words: 0
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                enterococcus faecalis,enterocin gr17,complete genome sequence,gene cluster,antibacterial activity

                Comments

                Comment on this article