19
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of the COVID-19 pandemic and the impact of uncertainties, mitigation strategies, and underreporting of cases in South Korea, Italy, and Brazil

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          By April 7th, 2020, the Coronavirus disease 2019 (COVID-19) has infected one and a half million people worldwide, accounting for over 80 thousand of deaths in 209 countries and territories around the world. The new and fast dynamics of the pandemic are challenging the health systems of different countries. In the absence of vaccines or effective treatments, mitigation policies, such as social isolation and lock-down of cities, have been adopted, but the results vary among different countries. Some countries were able to control the disease at the moment, as is the case of South Korea. Others, like Italy, are now experiencing the peak of the pandemic. Finally, countries with emerging economies and social issues, like Brazil, are in the initial phase of the pandemic. In this work, we use mathematical models with time-dependent coefficients, techniques of inverse and forward uncertainty quantification, and sensitivity analysis to characterize essential aspects of the COVID-19 in the three countries mentioned above. The model parameters estimated for South Korea revealed effective social distancing and isolation policies, border control, and a high number in the percentage of reported cases. In contrast, underreporting of cases was estimated to be very high in Brazil and Italy. In addition, the model estimated a poor isolation policy at the moment in Brazil, with a reduction of contact around 40%, whereas Italy and South Korea estimated numbers for contact reduction are at 75% and 90%, respectively. This characterization of the COVID-19, in these different countries under different scenarios and phases of the pandemic, supports the importance of mitigation policies, such as social distancing. In addition, it raises serious concerns for socially and economically fragile countries, where underreporting poses additional challenges to the management of the COVID-19 pandemic by significantly increasing the uncertainties regarding its dynamics.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia

          Abstract Background The initial cases of novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) occurred in Wuhan, Hubei Province, China, in December 2019 and January 2020. We analyzed data on the first 425 confirmed cases in Wuhan to determine the epidemiologic characteristics of NCIP. Methods We collected information on demographic characteristics, exposure history, and illness timelines of laboratory-confirmed cases of NCIP that had been reported by January 22, 2020. We described characteristics of the cases and estimated the key epidemiologic time-delay distributions. In the early period of exponential growth, we estimated the epidemic doubling time and the basic reproductive number. Results Among the first 425 patients with confirmed NCIP, the median age was 59 years and 56% were male. The majority of cases (55%) with onset before January 1, 2020, were linked to the Huanan Seafood Wholesale Market, as compared with 8.6% of the subsequent cases. The mean incubation period was 5.2 days (95% confidence interval [CI], 4.1 to 7.0), with the 95th percentile of the distribution at 12.5 days. In its early stages, the epidemic doubled in size every 7.4 days. With a mean serial interval of 7.5 days (95% CI, 5.3 to 19), the basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9). Conclusions On the basis of this information, there is evidence that human-to-human transmission has occurred among close contacts since the middle of December 2019. Considerable efforts to reduce transmission will be required to control outbreaks if similar dynamics apply elsewhere. Measures to prevent or reduce transmission should be implemented in populations at risk. (Funded by the Ministry of Science and Technology of China and others.)
            • Record: found
            • Abstract: found
            • Article: not found

            An interactive web-based dashboard to track COVID-19 in real time

            In December, 2019, a local outbreak of pneumonia of initially unknown cause was detected in Wuhan (Hubei, China), and was quickly determined to be caused by a novel coronavirus, 1 namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The outbreak has since spread to every province of mainland China as well as 27 other countries and regions, with more than 70 000 confirmed cases as of Feb 17, 2020. 2 In response to this ongoing public health emergency, we developed an online interactive dashboard, hosted by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, Baltimore, MD, USA, to visualise and track reported cases of coronavirus disease 2019 (COVID-19) in real time. The dashboard, first shared publicly on Jan 22, illustrates the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries. It was developed to provide researchers, public health authorities, and the general public with a user-friendly tool to track the outbreak as it unfolds. All data collected and displayed are made freely available, initially through Google Sheets and now through a GitHub repository, along with the feature layers of the dashboard, which are now included in the Esri Living Atlas. The dashboard reports cases at the province level in China; at the city level in the USA, Australia, and Canada; and at the country level otherwise. During Jan 22–31, all data collection and processing were done manually, and updates were typically done twice a day, morning and night (US Eastern Time). As the outbreak evolved, the manual reporting process became unsustainable; therefore, on Feb 1, we adopted a semi-automated living data stream strategy. Our primary data source is DXY, an online platform run by members of the Chinese medical community, which aggregates local media and government reports to provide cumulative totals of COVID-19 cases in near real time at the province level in China and at the country level otherwise. Every 15 min, the cumulative case counts are updated from DXY for all provinces in China and for other affected countries and regions. For countries and regions outside mainland China (including Hong Kong, Macau, and Taiwan), we found DXY cumulative case counts to frequently lag behind other sources; we therefore manually update these case numbers throughout the day when new cases are identified. To identify new cases, we monitor various Twitter feeds, online news services, and direct communication sent through the dashboard. Before manually updating the dashboard, we confirm the case numbers with regional and local health departments, including the respective centres for disease control and prevention (CDC) of China, Taiwan, and Europe, the Hong Kong Department of Health, the Macau Government, and WHO, as well as city-level and state-level health authorities. For city-level case reports in the USA, Australia, and Canada, which we began reporting on Feb 1, we rely on the US CDC, the government of Canada, the Australian Government Department of Health, and various state or territory health authorities. All manual updates (for countries and regions outside mainland China) are coordinated by a team at Johns Hopkins University. The case data reported on the dashboard aligns with the daily Chinese CDC 3 and WHO situation reports 2 for within and outside of mainland China, respectively (figure ). Furthermore, the dashboard is particularly effective at capturing the timing of the first reported case of COVID-19 in new countries or regions (appendix). With the exception of Australia, Hong Kong, and Italy, the CSSE at Johns Hopkins University has reported newly infected countries ahead of WHO, with Hong Kong and Italy reported within hours of the corresponding WHO situation report. Figure Comparison of COVID-19 case reporting from different sources Daily cumulative case numbers (starting Jan 22, 2020) reported by the Johns Hopkins University Center for Systems Science and Engineering (CSSE), WHO situation reports, and the Chinese Center for Disease Control and Prevention (Chinese CDC) for within (A) and outside (B) mainland China. Given the popularity and impact of the dashboard to date, we plan to continue hosting and managing the tool throughout the entirety of the COVID-19 outbreak and to build out its capabilities to establish a standing tool to monitor and report on future outbreaks. We believe our efforts are crucial to help inform modelling efforts and control measures during the earliest stages of the outbreak.
              • Record: found
              • Abstract: found
              • Article: found

              World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19)

              An unprecedented outbreak of pneumonia of unknown aetiology in Wuhan City, Hubei province in China emerged in December 2019. A novel coronavirus was identified as the causative agent and was subsequently termed COVID-19 by the World Health Organization (WHO). Considered a relative of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), COVID-19 is caused by a betacoronavirus named SARS-CoV-2 that affects the lower respiratory tract and manifests as pneumonia in humans. Despite rigorous global containment and quarantine efforts, the incidence of COVID-19 continues to rise, with 90,870 laboratory-confirmed cases and over 3,000 deaths worldwide. In response to this global outbreak, we summarise the current state of knowledge surrounding COVID-19.

                Author and article information

                Journal
                Chaos Solitons Fractals
                Chaos Solitons Fractals
                Chaos, Solitons, and Fractals
                Elsevier Ltd.
                0960-0779
                0960-0779
                14 May 2020
                14 May 2020
                : 109888
                Affiliations
                [a ]Departamento de Ciência da Computação, Universidade Federal de Juiz de Fora (BR), Brazil
                [b ]Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna (IT), Italy
                [c ]Pós-Graduação em Modelagem Computacional, Universidade Federal de Juiz de Fora (BR),Brazil
                [d ]Centro Federal de Educação Tecnológica de Minas de Gerais, Leopoldina (BR), Brazil
                Author notes
                [* ]Corresponding author. Tel.: +553288281099
                Article
                S0960-0779(20)30288-5 109888
                10.1016/j.chaos.2020.109888
                7221372
                32412556
                7bc1a6a4-5b79-4068-a0c6-0055104734c3
                © 2020 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 11 April 2020
                : 6 May 2020
                : 10 May 2020
                Categories
                Article

                covid-19,epidemiology,mathematical modeling,uncertainty quantification,sensitivity analysis

                Comments

                Comment on this article

                Related Documents Log