11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Place of pitavastatin in the statin armamentarium: promising evidence for a role in diabetes mellitus

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, known as statins, have revolutionized the treatment of hypercholesterolemia and coronary artery disease prevention. However, there are considerable issues regarding statin safety and further development of residual risk control, particularly for diabetic and metabolic syndrome patients. Pitavastatin is a potent statin with low-density lipoprotein (LDL) cholesterol-lowering effects comparable to those of atorvastatin or rosuvastatin. Pitavastatin has a high-density lipoprotein (HDL) cholesterol raising effect, may improve insulin resistance, and has little influence on glucose metabolism. Considering these factors along with its unique pharmacokinetic properties, which suggest minimal drug–drug interaction, pitavastatin could provide an alternative treatment choice, especially in patients with glucose intolerance or diabetes mellitus. Many clinical trials are now underway to test the clinical efficacy of pitavastatin in various settings and are expected to provide further information.

          Related collections

          Most cited references 110

          • Record: found
          • Abstract: found
          • Article: not found

          Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes.

          Cardiovascular morbidity is a major burden in patients with type 2 diabetes. In the Steno-2 Study, we compared the effect of a targeted, intensified, multifactorial intervention with that of conventional treatment on modifiable risk factors for cardiovascular disease in patients with type 2 diabetes and microalbuminuria. The primary end point of this open, parallel trial was a composite of death from cardiovascular causes, nonfatal myocardial infarction, nonfatal stroke, revascularization, and amputation. Eighty patients were randomly assigned to receive conventional treatment in accordance with national guidelines and 80 to receive intensive treatment, with a stepwise implementation of behavior modification and pharmacologic therapy that targeted hyperglycemia, hypertension, dyslipidemia, and microalbuminuria, along with secondary prevention of cardiovascular disease with aspirin. The mean age of the patients was 55.1 years, and the mean follow-up was 7.8 years. The decline in glycosylated hemoglobin values, systolic and diastolic blood pressure, serum cholesterol and triglyceride levels measured after an overnight fast, and urinary albumin excretion rate were all significantly greater in the intensive-therapy group than in the conventional-therapy group. Patients receiving intensive therapy also had a significantly lower risk of cardiovascular disease (hazard ratio, 0.47; 95 percent confidence interval, 0.24 to 0.73), nephropathy (hazard ratio, 0.39; 95 percent confidence interval, 0.17 to 0.87), retinopathy (hazard ratio, 0.42; 95 percent confidence interval, 0.21 to 0.86), and autonomic neuropathy (hazard ratio, 0.37; 95 percent confidence interval, 0.18 to 0.79). A target-driven, long-term, intensified intervention aimed at multiple risk factors in patients with type 2 diabetes and microalbuminuria reduces the risk of cardiovascular and microvascular events by about 50 percent. Copyright 2003 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients.

            Adiponectin is a novel, adipose-specific protein abundantly present in the circulation, and it has antiatherogenic properties. We analyzed the plasma adiponectin concentrations in age- and body mass index (BMI)-matched nondiabetic and type 2 diabetic subjects with and without coronary artery disease (CAD). Plasma levels of adiponectin in the diabetic subjects without CAD were lower than those in nondiabetic subjects (6.6+/-0.4 versus 7.9+/-0.5 microg/mL in men, 7.6+/-0.7 versus 11.7+/-1.0 microg/mL in women; P<0.001). The plasma adiponectin concentrations of diabetic patients with CAD were lower than those of diabetic patients without CAD (4.0+/-0.4 versus 6.6+/-0.4 microg/mL, P<0.001 in men; 6.3+/-0.8 versus 7.6+/-0. 7 microg/mL in women). In contrast, plasma levels of leptin did not differ between diabetic patients with and without CAD. The presence of microangiopathy did not affect the plasma adiponectin levels in diabetic patients. Significant, univariate, inverse correlations were observed between adiponectin levels and fasting plasma insulin (r=-0.18, P<0.01) and glucose (r=-0.26, P<0.001) levels. In multivariate analysis, plasma insulin did not independently affect the plasma adiponectin levels. BMI, serum triglyceride concentration, and the presence of diabetes or CAD remained significantly related to plasma adiponectin concentrations. Weight reduction significantly elevated plasma adiponectin levels in the diabetic subjects as well as the nondiabetic subjects. These results suggest that the decreased plasma adiponectin concentrations in diabetes may be an indicator of macroangiopathy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rosuvastatin and cardiovascular events in patients undergoing hemodialysis.

              Statins reduce the incidence of cardiovascular events in patients at high cardiovascular risk. However, a benefit of statins in such patients who are undergoing hemodialysis has not been proved. We conducted an international, multicenter, randomized, double-blind, prospective trial involving 2776 patients, 50 to 80 years of age, who were undergoing maintenance hemodialysis. We randomly assigned patients to receive rosuvastatin, 10 mg daily, or placebo. The combined primary end point was death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke. Secondary end points included death from all causes and individual cardiac and vascular events. After 3 months, the mean reduction in low-density lipoprotein (LDL) cholesterol levels was 43% in patients receiving rosuvastatin, from a mean baseline level of 100 mg per deciliter (2.6 mmol per liter). During a median follow-up period of 3.8 years, 396 patients in the rosuvastatin group and 408 patients in the placebo group reached the primary end point (9.2 and 9.5 events per 100 patient-years, respectively; hazard ratio for the combined end point in the rosuvastatin group vs. the placebo group, 0.96; 95% confidence interval [CI], 0.84 to 1.11; P=0.59). Rosuvastatin had no effect on individual components of the primary end point. There was also no significant effect on all-cause mortality (13.5 vs. 14.0 events per 100 patient-years; hazard ratio, 0.96; 95% CI, 0.86 to 1.07; P=0.51). In patients undergoing hemodialysis, the initiation of treatment with rosuvastatin lowered the LDL cholesterol level but had no significant effect on the composite primary end point of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke. (ClinicalTrials.gov number, NCT00240331.) 2009 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2011
                11 May 2011
                : 5
                : 283-297
                Affiliations
                Department of Cardiology, Kanazawa Medical University, Uchinada, Japan
                Author notes
                Correspondence: Kouji Kajinami, Department of Cardiology, Kanazawa Medical University, 1-1 Daigaku, Uchinada 920-0293, Japan, Tel +81 76 286 2211, Fax +81 76 286 3780, Email kajinami@ 123456kanazawa-med.ac.jp
                Article
                dddt-5-283
                10.2147/DDDT.S13492
                3100224
                21625418
                © 2011 Kawai et al, publisher and licensee Dove Medical Press Ltd.

                This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.

                Categories
                Review

                Comments

                Comment on this article