6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Improved model of ionic transport in 2-D MoS2 membranes with sub-5 nm pores

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          The potential and challenges of nanopore sequencing.

          A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of 'third generation' instruments that will sequence a diploid mammalian genome for approximately $1,000 in approximately 24 h.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Single-layer MoS2 nanopores as nanopower generators

            Making use of the osmotic pressure difference between fresh water and seawater is an attractive, renewable and clean way to generate power and is known as 'blue energy'. Another electrokinetic phenomenon, called the streaming potential, occurs when an electrolyte is driven through narrow pores either by a pressure gradient or by an osmotic potential resulting from a salt concentration gradient. For this task, membranes made of two-dimensional materials are expected to be the most efficient, because water transport through a membrane scales inversely with membrane thickness. Here we demonstrate the use of single-layer molybdenum disulfide (MoS2) nanopores as osmotic nanopower generators. We observe a large, osmotically induced current produced from a salt gradient with an estimated power density of up to 10(6) watts per square metre--a current that can be attributed mainly to the atomically thin membrane of MoS2. Low power requirements for nanoelectronic and optoelectric devices can be provided by a neighbouring nanogenerator that harvests energy from the local environment--for example, a piezoelectric zinc oxide nanowire array or single-layer MoS2 (ref. 12). We use our MoS2 nanopore generator to power a MoS2 transistor, thus demonstrating a self-powered nanosystem.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Water desalination with a single-layer MoS2 nanopore

              Efficient desalination of water continues to be a problem facing the society. Advances in nanotechnology have led to the development of a variety of nanoporous membranes for water purification. Here we show, by performing molecular dynamics simulations, that a nanopore in a single-layer molybdenum disulfide can effectively reject ions and allow transport of water at a high rate. More than 88% of ions are rejected by membranes having pore areas ranging from 20 to 60 Å2. Water flux is found to be two to five orders of magnitude greater than that of other known nanoporous membranes. Pore chemistry is shown to play a significant role in modulating the water flux. Pores with only molybdenum atoms on their edges lead to higher fluxes, which are ∼70% greater than that of graphene nanopores. These observations are explained by permeation coefficients, energy barriers, water density and velocity distributions in the pores.
                Bookmark

                Author and article information

                Journal
                Applied Physics Letters
                Appl. Phys. Lett.
                AIP Publishing
                0003-6951
                1077-3118
                January 14 2019
                January 14 2019
                : 114
                : 2
                : 023107
                Affiliations
                [1 ]Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-University Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex, France
                [2 ]Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA
                [3 ]Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
                Article
                10.1063/1.5061825
                7bd47bd9-530f-47d4-a97a-b91c739c9794
                © 2019
                History

                Comments

                Comment on this article