25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Complex Chromosomal Rearrangements Mediated by Break-Induced Replication Involve Structure-Selective Endonucleases

      research-article
      , *
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNA double-strand break (DSB) repair occurring in repeated DNA sequences often leads to the generation of chromosomal rearrangements. Homologous recombination normally ensures a faithful repair of DSBs through a mechanism that transfers the genetic information of an intact donor template to the broken molecule. When only one DSB end shares homology to the donor template, conventional gene conversion fails to occur and repair can be channeled to a recombination-dependent replication pathway termed break-induced replication (BIR), which is prone to produce chromosome non-reciprocal translocations (NRTs), a classical feature of numerous human cancers. Using a newly designed substrate for the analysis of DSB–induced chromosomal translocations, we show that Mus81 and Yen1 structure-selective endonucleases (SSEs) promote BIR, thus causing NRTs. We propose that Mus81 and Yen1 are recruited at the strand invasion intermediate to allow the establishment of a replication fork, which is required to complete BIR. Replication template switching during BIR, a feature of this pathway, engenders complex chromosomal rearrangements when using repeated DNA sequences dispersed over the genome. We demonstrate here that Mus81 and Yen1, together with Slx4, also promote template switching during BIR. Altogether, our study provides evidence for a role of SSEs at multiple steps during BIR, thus participating in the destabilization of the genome by generating complex chromosomal rearrangements.

          Author Summary

          Genome rearrangements consisting of non-reciprocal translocations (NRTs) seem to play an important role in carcinogenesis in humans. They are likely caused by intracellular mechanisms that are normally committed to repair breaks occurring in the DNA molecule. Failure of faithful repair of DNA double-strand breaks (DSBs) often leads to chromosomal rearrangements when repair occurs within repeated genomic regions. The break-induced replication (BIR) pathway of DSB repair is a major source of complex chromosomal rearrangements, the latter occurring when BIR involves template switching between dispersed repeated sequences. Given the deleterious consequences of such events for genomic stability, it is of great significance to understand the molecular bases of BIR. Here, we examined the role of different DNA nucleases in chromosomal rearrangements and uncovered the functional involvement of the structure-selective endonucleases (SSEs) subunits Mus81, Yen1, and Slx4 at different steps during BIR. Our work provides new clues to understand the origin of NRTs and the role of SSEs in their generation.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          DNA double-strand breaks: signaling, repair and the cancer connection.

          To ensure the high-fidelity transmission of genetic information, cells have evolved mechanisms to monitor genome integrity. Cells respond to DNA damage by activating a complex DNA-damage-response pathway that includes cell-cycle arrest, the transcriptional and post-transcriptional activation of a subset of genes including those associated with DNA repair, and, under some circumstances, the triggering of programmed cell death. An inability to respond properly to, or to repair, DNA damage leads to genetic instability, which in turn may enhance the rate of cancer development. Indeed, it is becoming increasingly clear that deficiencies in DNA-damage signaling and repair pathways are fundamental to the etiology of most, if not all, human cancers. Here we describe recent progress in our understanding of how cells detect and signal the presence and repair of one particularly important form of DNA damage induced by ionizing radiation-the DNA double-strand break (DSB). Moreover, we discuss how tumor suppressor proteins such as p53, ATM, Brca1 and Brca2 have been linked to such pathways, and how accumulating evidence is connecting deficiencies in cellular responses to DNA DSBs with tumorigenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders.

            The prevailing mechanism for recurrent and some nonrecurrent rearrangements causing genomic disorders is nonallelic homologous recombination (NAHR) between region-specific low-copy repeats (LCRs). For other nonrecurrent rearrangements, nonhomologous end joining (NHEJ) is implicated. Pelizaeus-Merzbacher disease (PMD) is an X-linked dysmyelinating disorder caused most frequently (60%-70%) by nonrecurrent duplication of the dosage-sensitive proteolipid protein 1 (PLP1) gene but also by nonrecurrent deletion or point mutations. Many PLP1 duplication junctions are refractory to breakpoint sequence analysis, an observation inconsistent with a simple recombination mechanism. Our current analysis of junction sequences in PMD patients confirms the occurrence of simple tandem PLP1 duplications but also uncovers evidence for sequence complexity at some junctions. These data are consistent with a replication-based mechanism that we term FoSTeS, for replication Fork Stalling and Template Switching. We propose that complex duplication and deletion rearrangements associated with PMD, and potentially other nonrecurrent rearrangements, may be explained by this replication-based mechanism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Break-induced replication and telomerase-independent telomere maintenance require Pol32.

              Break-induced replication (BIR) is an efficient homologous recombination process to initiate DNA replication when only one end of a chromosome double-strand break shares homology with a template. BIR is thought to re-establish replication at stalled and broken replication forks and to act at eroding telomeres in cells that lack telomerase in pathways known as 'alternative lengthening of telomeres' (reviewed in refs 2, 6). Here we show that, in haploid budding yeast, Rad51-dependent BIR induced by HO endonuclease requires the lagging strand DNA Polalpha-primase complex as well as Poldelta to initiate new DNA synthesis. Polepsilon is not required for the initial primer extension step of BIR but is required to complete 30 kb of new DNA synthesis. Initiation of BIR also requires the nonessential DNA Poldelta subunit Pol32 primarily through its interaction with another Poldelta subunit, Pol31. HO-induced gene conversion, in which both ends of a double-strand break engage in homologous recombination, does not require Pol32. Pol32 is also required for the recovery of both Rad51-dependent and Rad51-independent survivors in yeast strains lacking telomerase. These results strongly suggest that both types of telomere maintenance pathways occur by recombination-dependent DNA replication. Thus Pol32, dispensable for replication and for gene conversion, is uniquely required for BIR; this finding provides an opening into understanding how DNA replication re-start mechanisms operate in eukaryotes. We also note that Pol32 homologues have been identified both in fission yeast and in metazoans where telomerase-independent survivors with alternative telomere maintenance have also been identified.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                September 2012
                September 2012
                27 September 2012
                03 October 2012
                : 8
                : 9
                : e1002979
                Affiliations
                [1]Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Sevilla, Spain
                National Cancer Institute, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: BP AA. Performed the experiments: BP. Analyzed the data: BP AA. Contributed reagents/materials/analysis tools: BP AA. Wrote the paper: BP AA.

                Article
                PGENETICS-D-11-02282
                10.1371/journal.pgen.1002979
                3459980
                23071463
                7be85de2-8aba-4266-99c3-c00f14e759f4
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 26 October 2011
                : 8 August 2012
                Page count
                Pages: 18
                Funding
                This work was funded by grants from the Spanish Ministry of Science and Innovation (BFU2006-05260, BFU2010-16370, and Consolider Ingenio 2010 CSD2007-015), Junta de Andalucía (BIO-102 and CVI-4567), and the European Union (FEDER). BP was supported by fellowships from Fondation Recherche Médicale (SPE20061209019) and EMBO (1003-2006) and a contract of the Juan de la Cierva Program of the Spanish Ministry of Science and Innovation (JCI 2009-04101). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Genetics
                Genomics
                Molecular Cell Biology

                Genetics
                Genetics

                Comments

                Comment on this article