1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Recreational concentrations of alcohol enhance synaptic inhibition of cerebellar unipolar brush cells via pre- and postsynaptic mechanisms

      1 , 2 , 1 , 2
      Journal of Neurophysiology
      American Physiological Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d9396021e177">Genetic variability in cerebellar alcohol/ethanol sensitivity (ethanol-induced ataxia) predicts ethanol consumption phenotype in rodents and humans, but the cellular and molecular mechanisms underlying genetic differences are largely unknown. Here it is demonstrated that recreational concentrations of alcohol (10–30 mM) enhance glycinergic and GABAergic inhibition of unipolar brush cells through increases in glycine/GABA release and postsynaptic enhancement of glycine receptor-mediated responses. Ethanol effects varied across rodent genotypes parallel to ethanol consumption and motor sensitivity phenotype. </p><p class="first" id="d9396021e180">Variation in cerebellar sensitivity to alcohol/ethanol (EtOH) is a heritable trait associated with alcohol use disorder in humans and high EtOH consumption in rodents, but the underlying mechanisms are poorly understood. A recently identified cellular substrate of cerebellar sensitivity to EtOH, the GABAergic system of cerebellar granule cells (GCs), shows divergent responses to EtOH paralleling EtOH consumption and motor impairment phenotype. Although GCs are the dominant afferent integrator in the cerebellum, such integration is shared by unipolar brush cells (UBCs) in vestibulocerebellar lobes. UBCs receive both GABAergic and glycinergic inhibition, both of which may mediate diverse neurological effects of EtOH. Therefore, the impact of recreational concentrations of EtOH (~10–50 mM) on GABA <sub>A</sub> receptor (GABA <sub>A</sub>R)- and glycine receptor (GlyR)-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) of UBCs in cerebellar slices was characterized. Sprague-Dawley rat (SDR) UBCs exhibited sIPSCs mediated by GABA <sub>A</sub>Rs, GlyRs, or both, and EtOH dose-dependently (10, 26, 52 mM) increased their frequency and amplitude. EtOH increased the frequency of glycinergic and GABAergic sIPSCs and selectively enhanced the amplitude of glycinergic sIPSCs. This GlyR-specific enhancement of sIPSC amplitude resulted from EtOH actions at presynaptic Golgi cells and via protein kinase C-dependent direct actions on postsynaptic GlyRs. The magnitude of EtOH-induced increases in UBC sIPSC activity varied across SDRs and two lines of mice, in parallel with their respective alcohol consumption/motor impairment phenotypes. These data indicate that Golgi cell-to-UBC inhibitory synapses are targets of EtOH, which acts at pre- and postsynaptic sites, via Golgi cell excitation and direct GlyR enhancement. </p><p id="d9396021e191"> <b>NEW &amp; NOTEWORTHY</b> Genetic variability in cerebellar alcohol/ethanol sensitivity (ethanol-induced ataxia) predicts ethanol consumption phenotype in rodents and humans, but the cellular and molecular mechanisms underlying genetic differences are largely unknown. Here it is demonstrated that recreational concentrations of alcohol (10–30 mM) enhance glycinergic and GABAergic inhibition of unipolar brush cells through increases in glycine/GABA release and postsynaptic enhancement of glycine receptor-mediated responses. Ethanol effects varied across rodent genotypes parallel to ethanol consumption and motor sensitivity phenotype. </p>

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications.

          The loss of control over drug intake that occurs in addiction was initially believed to result from disruption of subcortical reward circuits. However, imaging studies in addictive behaviours have identified a key involvement of the prefrontal cortex (PFC) both through its regulation of limbic reward regions and its involvement in higher-order executive function (for example, self-control, salience attribution and awareness). This Review focuses on functional neuroimaging studies conducted in the past decade that have expanded our understanding of the involvement of the PFC in drug addiction. Disruption of the PFC in addiction underlies not only compulsive drug taking but also accounts for the disadvantageous behaviours that are associated with addiction and the erosion of free will.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Self-control in decision-making involves modulation of the vmPFC valuation system.

            Every day, individuals make dozens of choices between an alternative with higher overall value and a more tempting but ultimately inferior option. Optimal decision-making requires self-control. We propose two hypotheses about the neurobiology of self-control: (i) Goal-directed decisions have their basis in a common value signal encoded in ventromedial prefrontal cortex (vmPFC), and (ii) exercising self-control involves the modulation of this value signal by dorsolateral prefrontal cortex (DLPFC). We used functional magnetic resonance imaging to monitor brain activity while dieters engaged in real decisions about food consumption. Activity in vmPFC was correlated with goal values regardless of the amount of self-control. It incorporated both taste and health in self-controllers but only taste in non-self-controllers. Activity in DLPFC increased when subjects exercised self-control and correlated with activity in vmPFC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lateral prefrontal cortex and self-control in intertemporal choice.

              Disruption of function of left, but not right, lateral prefrontal cortex (LPFC) with low-frequency repetitive transcranial magnetic stimulation (rTMS) increased choices of immediate rewards over larger delayed rewards. rTMS did not change choices involving only delayed rewards or valuation judgments of immediate and delayed rewards, providing causal evidence for a neural lateral-prefrontal cortex-based self-control mechanism in intertemporal choice.
                Bookmark

                Author and article information

                Journal
                Journal of Neurophysiology
                Journal of Neurophysiology
                American Physiological Society
                0022-3077
                1522-1598
                July 2017
                July 2017
                : 118
                : 1
                : 267-279
                Affiliations
                [1 ]Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington; and
                [2 ]Alcohol and Drug Abuse Research Program, Washington State University, Pullman, Washington
                Article
                10.1152/jn.00963.2016
                5498730
                28381493
                7bf79e01-e653-4e3d-a9f5-1d436f8daaf7
                © 2017
                History

                Comments

                Comment on this article