4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      High cytotoxicity of vanadium(IV) complexes with 1,10-phenanthroline and related ligands is due to decomposition in cell culture medium

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Recent developments in ruthenium anticancer drugs.

          Interest in Ru anticancer drugs has been growing rapidly since NAMI-A ((ImH(+))[Ru(III)Cl(4)(Im)(S-dmso)], where Im = imidazole and S-dmso = S-bound dimethylsulfoxide) or KP1019 ((IndH(+))[Ru(III)Cl(4)(Ind)(2)], where Ind = indazole) have successfully completed phase I clinical trials and an array of other Ru complexes have shown promise for future development. Herein, the recent literature is reviewed critically to ascertain likely mechanisms of action of Ru-based anticancer drugs, with the emphasis on their reactions with biological media. The most likely interactions of Ru complexes are with: (i) albumin and transferrin in blood plasma, the former serving as a Ru depot, and the latter possibly providing active transport of Ru into cells; (ii) collagens of the extracellular matrix and actins on the cell surface, which are likely to be involved in the specific anti-metastatic action of Ru complexes; (iii) regulatory enzymes within the cell membrane and/or in the cytoplasm; and (iv) DNA in the cell nucleus. Some types of Ru complexes can also promote the intracellular formation of free radical species, either through irradiation (photodynamic therapy), or through reactions with cellular reductants. The metabolic pathways involve competition among reduction, aquation, and hydrolysis in the extracellular medium; binding to transport proteins, the extracellular matrix, and cell-surface biomolecules; and diffusion into cells; with the extent to which individual drugs participate in various steps along these pathways being crucial factors in determining whether they are mainly anti-metastatic or cytotoxic. This diversity of modes of action of Ru anticancer drugs is also likely to enhance their anticancer activities and to reduce the potential for them to develop tumour resistance. New approaches to metabolic studies, such as X-ray absorption spectroscopy and X-ray fluorescence microscopy, are required to provide further mechanistic insights, which could lead to the rational design of improved Ru anticancer drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vanadium compounds in medicine

            Vanadium is a transition metal that, being ubiquitously distributed in soil, crude oil, water and air, also found roles in biological systems and is an essential element in most living beings. There are also several groups of organisms which accumulate vanadium, employing it in their biological processes. Vanadium being a biological relevant element, it is not surprising that many vanadium based therapeutic drugs have been proposed for the treatment of several types of diseases. Namely, vanadium compounds, in particular organic derivatives, have been proposed for the treatment of diabetes, of cancer and of diseases caused by parasites. In this work we review the medicinal applications proposed for vanadium compounds with particular emphasis on the more recent publications. In cells, partly due to the similarity of vanadate and phosphate, vanadium compounds activate numerous signaling pathways and transcription factors; this by itself potentiates application of vanadium-based therapeutics. Nevertheless, this non-specific bio-activity may also introduce several deleterious side effects as in addition, due to Fenton's type reactions or of the reaction with atmospheric O2, VCs may also generate reactive oxygen species, thereby introducing oxidative stress with consequences presently not well evaluated, particularly for long-term administration of vanadium to humans. Notwithstanding, the potential of vanadium compounds to treat type 2 diabetes is still an open question and therapies using vanadium compounds for e.g. antitumor and anti-parasitic related diseases remain promising.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro.

              The zinc(II) ion has recently been implicated in a number of novel functions and pathologies in loci as diverse as the brain, retina, small intestine, prostate, heart, pancreas, and immune system. Zinc ions are a required nutrient but elevated concentrations are known to kill cells in vitro. Paradoxical observations regarding zinc's effects have appeared frequently in the literature, and often their physiological relevance is unclear. We found that for PC-12, HeLa and HT-29 cell lines as well as primary cultures of cardiac myocytes and neurons in vitro in differing media, approximately 5 nmol/L free zinc (pZn = 8.3, where pZn is defined as--log(10) [free Zn(2+)]) produced apparently healthy cells, but 20-fold higher or (in one case) lower concentrations were usually harmful as judged by multiple criteria. These results indicate that (1) the free zinc ion levels of media should be controlled with a metal ion buffer; (2) adding zinc or strong zinc ligands to an insufficiently buffered medium may lead to unpredictably low or high free zinc levels that are often harmful to cells; and (3) it is generally desirable to measure free zinc ion levels due to the presence of contaminating zinc in many biochemicals and unknown buffering capacity of many media.
                Bookmark

                Author and article information

                Journal
                JBIC Journal of Biological Inorganic Chemistry
                J Biol Inorg Chem
                Springer Nature
                0949-8257
                1432-1327
                July 2017
                April 3 2017
                July 2017
                : 22
                : 5
                : 663-672
                Article
                10.1007/s00775-017-1453-4
                28374136
                7c13cd9a-42c4-4da9-8ab0-790464b4b185
                © 2017

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article